PRACTICE: OXIDATIVE PHOSPHORYLATION

- 21. The reactive oxygen species made in quinones during electron transport are released into the mitochondrial matrix as:
 - a. O_2
 - b. O₂-
 - c. O₃-
 - d. H_2O_2
 - e. H₂O
- 22. Given the standard reduction potentials below, what is the overall standard redox potential of electron transport?

NAD+ + H+ +
$$2e^- \rightarrow NADH \ E^{\circ}'(V) = -0.32$$

$$1/2O_2 + 2H^+ + 2e^- \rightarrow H_2O E^{\circ}' (V)=0.82$$

23. Calculate the energy released as one mole of electrons moves between cytochrome- a_3 and cytochrome- a_1 , within respiratory complex IV. Cytochrome- a_1 (E°' = 0.29v) and Cytochrome- a_3 (E°' = 0.35v)