PRACTICE: OXIDATIVE PHOSPHORYLATION - 21. The reactive oxygen species made in quinones during electron transport are released into the mitochondrial matrix as: - a. O_2 - b. O₂- - c. O₃- - d. H_2O_2 - e. H₂O - 22. Given the standard reduction potentials below, what is the overall standard redox potential of electron transport? NAD+ + H+ + $$2e^- \rightarrow NADH \ E^{\circ}'(V) = -0.32$$ $$1/2O_2 + 2H^+ + 2e^- \rightarrow H_2O E^{\circ}' (V)=0.82$$ 23. Calculate the energy released as one mole of electrons moves between cytochrome- a_3 and cytochrome- a_1 , within respiratory complex IV. Cytochrome- a_1 (E°' = 0.29v) and Cytochrome- a_3 (E°' = 0.35v)