CONCEPT: COFACTOR

- Catalytic activity of many enzymes is dependent on the presence of small molecules called ______.
- <u>Cofactors</u>: _____-protein portions of enzymes that help with catalysis.
 - ____enzymes: *inactive* enzyme without its cofactor.
 - ____enzymes: catalytically *active* enzyme with its cofactor.
 - □ Cofactors tend to bind to active sites, but their functional roles _____ greatly from enzyme to enzyme.

EXAMPLE:

PRACTICE: Aldoase requires Zn²⁺ for catalysis. Under cellular conditions of zinc deficiency, aldoase is referred to as:

- a) Apoenzyme.
- c) Holoenzyme.
- b) Coenzyme.
- d) Prosthetic group.

Coenzymes & Metal Ions

•	main groups of cofactors: 1)		2)	ions.	
	1) <u>Coenzymes</u> : small organic molecules derived from				
	□ Prosthetic groups:	bound or covalent	ly attached c	oenzymes.	

- 2) Metal lons: metal atoms with a net charge.
 - □ *Metalloenzymes*: enzymes with _____ bound metal ions (usually Fe²⁺, Fe³⁺, Cu²⁺, Zn²⁺, or Mn²⁺).

□ *Activator ions*: _____ bound metal ions (usually Na⁺, K⁺, Mg²⁺, or Ca²⁺).

□ Cosubstrates: bound recyclable substrate-coenzymes (ex. ATP & NADH).

Coenzyme	Vitamin Precursor	Example Enzyme
Biotin	Biotin (Vitamin B ₇)	Pyruvate Carboxylase
Coenzyme A (CoA)	Pantothenic Acid (Vitamin B ₅)	Acetyl-CoA Carboxylase
Flavin Adenine Dinucleotide (FAD)	Riboflavin (Vitamin B ₂)	Monoamine Oxidase
Nicotinamide Adenine Dinucleotide (NAD+)	Niacin (Vitamin B ₃)	Lactate Dehydrogenase
Pyridoxal Phosphate (PLP)	Pyridoxine (Vitamin B ₆)	Glycogen Phosphorylase

Metal lons	Example Enzyme
Zn ²⁺	Carbonic Anhydrase
Mg ²⁺	EcoRV
Mn ²⁺ or Mn ³⁺	Superoxide Dismutase
K ⁺	Acetoacetyl CoA Thiolase

PRACTICE: Which of the following options is false?

- a) Metal ions can bind directly to enzymes or coenzymes.
- c) Organic cofactors can be called coenzymes.

b) Metal ions often act as cofactors.

d) Metal ions can be prosthetic groups.