CONCEPT: COFACTOR - Catalytic activity of many enzymes is dependent on the presence of small molecules called ______. - <u>Cofactors</u>: _____-protein portions of enzymes that help with catalysis. - ____enzymes: *inactive* enzyme without its cofactor. - ____enzymes: catalytically *active* enzyme with its cofactor. - □ Cofactors tend to bind to active sites, but their functional roles _____ greatly from enzyme to enzyme. ## **EXAMPLE:** **PRACTICE:** Aldoase requires Zn²⁺ for catalysis. Under cellular conditions of zinc deficiency, aldoase is referred to as: - a) Apoenzyme. - c) Holoenzyme. - b) Coenzyme. - d) Prosthetic group. ## **Coenzymes & Metal Ions** | • | main groups of cofactors: 1) | | 2) | ions. | | |---|--|-------------------|---------------|-----------|--| | | 1) <u>Coenzymes</u> : small organic molecules derived from | | | | | | | □ Prosthetic groups: | bound or covalent | ly attached c | oenzymes. | | - 2) Metal lons: metal atoms with a net charge. - □ *Metalloenzymes*: enzymes with _____ bound metal ions (usually Fe²⁺, Fe³⁺, Cu²⁺, Zn²⁺, or Mn²⁺). □ *Activator ions*: _____ bound metal ions (usually Na⁺, K⁺, Mg²⁺, or Ca²⁺). □ Cosubstrates: bound recyclable substrate-coenzymes (ex. ATP & NADH). | Coenzyme | Vitamin Precursor | Example Enzyme | |--|--|------------------------| | Biotin | Biotin (Vitamin B ₇) | Pyruvate Carboxylase | | Coenzyme A (CoA) | Pantothenic Acid (Vitamin B ₅) | Acetyl-CoA Carboxylase | | Flavin Adenine Dinucleotide (FAD) | Riboflavin (Vitamin B ₂) | Monoamine Oxidase | | Nicotinamide Adenine Dinucleotide (NAD+) | Niacin (Vitamin B ₃) | Lactate Dehydrogenase | | Pyridoxal Phosphate (PLP) | Pyridoxine (Vitamin B ₆) | Glycogen Phosphorylase | | Metal lons | Example Enzyme | |--------------------------------------|--------------------------| | Zn ²⁺ | Carbonic Anhydrase | | Mg ²⁺ | EcoRV | | Mn ²⁺ or Mn ³⁺ | Superoxide Dismutase | | K ⁺ | Acetoacetyl CoA Thiolase | **PRACTICE:** Which of the following options is false? - a) Metal ions can bind directly to enzymes or coenzymes. - c) Organic cofactors can be called coenzymes. b) Metal ions often act as cofactors. d) Metal ions can be prosthetic groups.