CONCEPT: FATTY ACIDS

- Fatty Acids (______): hydrocarbon chains of varying length with a terminal _____ acid. □ Used as *building blocks* for more complex lipids (ex. glycerolipids, sphingolipids, etc.). Carbon atoms of fatty acids are usually ______ starting at the carboxyl carbon. \Box Alpha Carbon (α): carbon atom ______ to the carboxyl carbon. □ *Omega Carbon* (ω): carbon atom ______ from the carboxyl carbon.
- **EXAMPLE:** Fatty Acids.

PRACTICE: Which fatty acid chain would you expect to be least soluble in water?

- a) 16-Carbon fatty acid.
- b) 14-Carbon fatty acid. c) 22-Carbon fatty acid. d) 12-Carbon fatty acid.

Saturated vs. Unsaturated Fatty Acids

- Fatty acids are categorized into _____ groups based on their *hydrocarbon chains*:
 - 1) Saturated Fatty Acids: fully _____ with hydrogens (only contains C-C _____ bonds).
 - 2) **Un**saturated Fatty Acids: _____ fully saturated with hydrogens due to presence of ≥ 1 C=C _____ bond.
 - □ "Mono-" & "Poly-" prefixes respectively indicate just _____ or _____ 1 double bond.
 - □ Unsaturated fatty acids *double bonds* are *almost always* in the _____ conformation (creating *kinks*).

EXAMPLE: Saturated vs. Unsaturated Fatty Acids.

CONCEPT: FATTY ACIDS

PRACTICE: What is the molecular formula of Linolenic acid, an 18-carbon polyunsaturated fatty acid with 3 double bonds?

- a) C₁₈H₃₂O₂
- b) $C_{18}H_{30}O_2$
- c) $C_{28}H_{30}O_2$
- d) $C_{18}H_{34}O_2$

Melting Points of Fatty Acids

- _____ primary factors affect the strength of ______ interactions & thus the _____ point of fatty acids.
 - 1) Length of the hydrocarbon chains (longer chains mean _____ melting point)
 - 2) Degree of saturation of hydrocarbon chains (*more double-bonds* means _____ melting point).
- •Therefore, ____saturated fatty acids (with kinks in their chains) have lower melting points than saturated fatty acids.

EXAMPLE:

Table 1

Fatty Acid	# of Carbons	Melting Point (°C)
Myristate	14	58
Palmitate	16	63
Stearate	18	71
Arachidate	20	77

Table 2

Fatty Acid	# of Double Bonds	Melting Point (°C)
Oleate	1	16
Linoleate	2	-5
Linolenate	3	-11
Arachidonate	4	-50

- □ _____: solids at room temperature.
- □ _____: *liquids* at room temperature

PRACTICE: What aspect of each of the 18-carbon fatty acids in the table below is correlated with their melting point?

- a) The charge of the carboxylic acid group.
- b) The length of the hydrocarbon chain.
- c) The number of double bonds.
- d) The polar hydrocarbon chains.

Fattv	Δcid	Meltina	Temn
гацу	Aciu	weiting	i emb

Stearic Acid	71 °C
Oleic Acid	16 °C
Linoleic Acid	-5 °C
Linolonic Acid	11 00

CONCEPT: FATTY ACIDS

PRACTICE: What happens to the melting point in fatty acids as the hydrocarbon length increases?

- a) It increases.
- b) It decreases.
- c) It stays the same.
- d) There is no direct correlation.

PRACTICE: Unsaturated fatty acids:

- a) Usually contain a double bond with cis stereochemistry.
- b) Are found in both plants and animals.
- c) Sometimes contain multiple double bonds.
- d) Have lower melting points than the analogous saturated fatty acids.
- e) All of the above are correct.

PRACTICE: Which of the following are correct with regard to saturated fatty acids?

- a) They are generally solid at room temperature.
- b) The carbon backbone contains at least one double bond, creating a kink in the chain.
- c) Come primarily from vegetable products.
- d) They are only hydrocarbon chains, making them liquids at room temperature.
- e) Cannot be present in other lipids, such as phospholipids.

PRACTICE: Match each of the fatty acids with the appropriate melting point:

- a) CH₃(CH₂)₁₈COOH _____
- b) CH₃(CH₂)₁₄COOH _____
- c) CH₃(CH₂)₁₀COOH _____
- d) $CH_3(CH_2)_7CH=CH(CH_2)_7COOH$
- e) CH₃(CH₂)₄CH=CH-CH₂-CH=CH(CH₂)₇COOH _____

Melting Points:				
13°C				

45°C

-5°C

76°C

63°C

Room Temperature:

25°C