- _____: the ability for all *cells* to produce, receive & respond to external signals/conditions.
 - □ Allows for the *response to stimuli* & effective cellular *communication*.

Signal Transduction

- Signal ______ : cell process that _____ signals/information into a chemical change/response.
 - □ Requires a *minimum* of _____ key components:
 - 1) a ______: a small molecule that specifically binds & forms a complex with a biomolecule/receptor.
 - 2) a ______: typically, an integral membrane protein that changes *conformation* upon ligand binding.
- •NOTE: receptor-ligand interactions are protein-ligand interactions, so be sure to check out those previous videos!

PRACTICE: A sample of cells has a total receptor concentration of 10 mM and a free ligand concentration of 15 mM. If 25% of the receptors are occupied with ligand under these conditions, calculate the receptor-ligand dissociation constant (K_d).

- a) 7 mM.
- b) 38 mM.
- c) 12 mM.
- d) 45 mM.

PRACTICE: Which hormone from the plot below shows the highest binding affinity for the receptor?

- a) Hormone X.
- b) Hormone Y.
- c) Hormone Z.

<u>5 Features of Biosignaling Transduction Systems</u>

PRACTICE: Which of the following statements regarding signal transduction pathways in cells is FALSE?

- a) A ligand, such as a hormone, binds to a specific cell surface receptor on a target cell.
- b) Signal transduction cascades, often involving protein kinases, amplify a signal intracellularly.
- c) A receptor changes conformation upon ligand binding, transmitting a signal across the cell membrane.
- d) Signal transduction cascades directly transmit a single stimulus to one, single target, identically in all cells.
- e) Phosphatases remove phosphoryl groups from polypeptides, regulating a cell's response.

Types of Kinases

•Mc	oving forwa	rd, we will see that _	pl	play a large role in biosignaling to create the cell response.				
	□ Reca	all: <i>Kinases</i> : enzyme	s that	their substrates (utilizing ATP).				
	□ Phosphorylation leads to activity of the target (activation or inhibition).							
●Two of the most common classes of kinases are/ Kinases & Kinases.								
□ Ser/Thr Kinases: phosphorylate & residues on their targets (make up ~25% (¼) of all kinases)								ll kinases).
□ <i>Tyr Kinases</i> : phosphorylate residues on their targets.								
Γ				Phospho-Serine	Phospho-Threonia	Tyrosine		Phospho-Tyrosine O
	Serine O	Threonine O	ADP	H ₃ N O O	H ₃ N O	⊖ H ₃ N O O	ADP	H ₃ N O O

OR

PRACTICE: Why is the activation of a protein kinase an important step in signal transduction?

- a) Kinases bind to receptors and prevent binding of the ligand.
- b) Kinases prevent signal amplification by degrading specific enzymes in the cell.
- c) Kinases can activate or inactivate proteins by phosphorylation.
- d) Kinases are secreted by a cell as a signaling molecule.

Types of Biosignaling Receptors

o[⊙] OR

•_____ major types of integral membrane protein receptors involved in most signal transduction pathways:

1 G Protein-Coupled Receptors (_____).

2 Receptor Tyrosine Kinases (_____).

•GPCRs & RTKs transduce extracellular signals via fundamentally ______ mechanisms.

EXAMPLE: GPCRs vs. RTKs.

Map of Lesson on Biosignaling Pathways

