CONCEPT: ACTIVATION ENERGY

- Energy of Activation (E_A or ΔG[‡]): energy barrier between substrates & transition state.
 - □ E_A controls *kinetics*; the _____ the E_A, the ____ it takes for a reaction to take place. en
- Question: What factors contribute to the E_A barrier?
 - □ _____ factors primarily contribute to the E_A barrier:
- 1) _____ of substrates 3) ____ of a substrate 4) ____
- Binding energy of an enzyme to its substrate influences each of these factors to ______ the E_A.

PRACTICE: Which of the following best describes the energy of activation for a reaction?

- a) The difference in free energy between the substrate and product.
- b) The difference in entropy between the substrate and transition state.
- c) The difference in free energy between the substrate and the transition state.
- d) The difference in entropy between the product and transition state.

1) Reducing Entropy & Random Motion

- Substrates in solution require collisions for reactions to take place but have lots of ______ motion (high entropy).
 The _____ random motion, the _____ the likelihood of substrates colliding, which _____ the E_A.
 Enzymes _____ entropy of a reaction system by *restricting* random motion of substrates & bringing them *closer*.
- □ Leads to increased likelihood of substrates reacting & a ______ E_A.

EXAMPLE: Enzymes Reduce Entropy.

PRACTICE: Which of the following best describes catalysis by proximity?

- a) Catalysis by activation of the substrate through an interaction with an acidic amino acid.
- b) Catalysis through enzyme-cofactor modification and a reduction in activation energy.
- c) Catalysis through increasing the concentration of substrates in the enzyme active site.
- d) Catalysis through physical distortion and strain on the substrate.

CONCEPT: ACTIVATION ENERGY

2) Proper Orientation of Substrates

 Not only do substrates in solution require 	a collision to react, they require collision in a prope	r	
□ Properly oriented random collisio	ns between substrates in solution can be	, which	E _A .
●Enzymes properly orient the	groups of substrates to make reactions <i>more</i> like	ly & decrease E _A .	

EXAMPLE: Enzymes Properly Orient Substrates.

PRACTICE: Which of the following statements is false with respect to an enzyme's ability to catalyze a reaction?

- a) An enzyme provides a reaction surface & suitable environment for a reaction to take place.
- b) An enzyme binds substrates to position them correctly & allow them to attain transition state configurations.
- c) An enzyme allows a reaction to go through a less stable transition state than normal.
- d) a & c are false.

3) Distortion of a Substrate

Many reactions require _____ of a substrate into an unstable/high-energy transition state (‡).
 Distortion leads to an *increased* _____.
 fit allows enzymes to form interactions with the ‡ and _____ distortions to *decrease* E_A.

EXAMPLE: Enzymes Stabilize ‡ Distortions.

PRACTICE: Which of the following is not a way that enzymes increase rates of reactions?

- a) Binding of substrates in close proximity.
- c) Stabilization of the transition state.
- b) Covalently binding to the substrate.
- d) Conformational changes in binding site slightly increases E_A.

CONCEPT: ACTIVATION ENERGY

4) Solvation

•Solvation/hydration shells surrounding substrates in aqueous solutions can _____ with substrate reactions.

□ Interference *increases* & *slows* reaction.

◆Potentially interfering H₂O hydration shells are ______ with ES interactions.

EXAMPLE: Enzymes Desolvate Substrates.

PRACTICE: Binding energy between an enzyme and a substrate contributes to catalysis in which way?

- a) Binding energy allows an enzyme to properly orient its substrates.
- b) Binding energy contributions allow for entropy reduction in the ES-complex.
- c) Binding energy compensates for energy changes as a result of desolvation of the substrate.
- d) Binding energy contributes to the process of induced fit between the enzyme & the substrate.
- e) a, b & c.
- f) All the above are correct.

PRACTICE: Enzymes are potent catalysts because they:

- a) Are consumed in the reactions they catalyze.
- b) Are very specific and can prevent the conversion of products back to substrates.
- c) Drive reactions to completion while other catalysts drive reactions to equilibrium.
- d) Increase the equilibrium constants for the reactions they catalyze.
- e) Lower the activation energy by stabilizing the transition states for the reactions they catalyze.