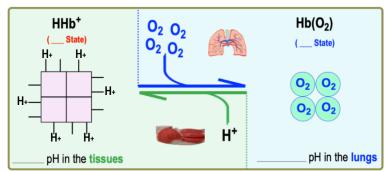

CONCEPT: HEMOGLOBIN CARBONATION & PROTONATION

Hemoglobin Carbonation (HbCO₂) in the Tissues

- ●Hb can *directly* transport *some* small amount (~10%) of _____ from the tissues to the lungs.
- •Each Hb subunit can bind CO₂ as carbamate groups on each free α-amino group to form carbaminohemoglobin (HbCO₂).
 - □ Recall: Hb carbonation stabilizes Hb's _____ state (causing the *release* of O₂).
 - □ In the _____ pCO₂ of the *tissues*, Hb is *carbonated* & releases O₂.
 - □ In the _____ pCO₂ of the *lungs* (due to CO₂ exhalation), Hb is *decarbonated* & binds O₂.

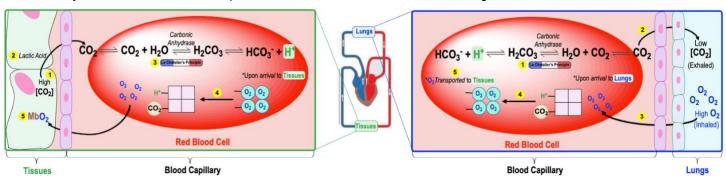


PRACTICE: Which option best corresponds with the effect of CO₂ on hemoglobin's O₂-binding?

- a) Hb's O₂-affinity decreases with lower CO₂ concentration.
- b) Hb's O₂-affinity increases with higher CO₂ concentration.
- c) Low pCO₂ stabilizes the T state conformation of Hemoglobin.
- d) High pCO₂ stabilizes the R state conformation of Hemoglobin.
- e) High pCO₂ stabilizes the T state conformation of Hemoglobin.

Hemoglobin Protonation (HHb+) in the Tissues

- ●Hb can become _____ on several amino acid R-groups (HHb+) to carry H+.
 - \Box In the relatively _____ [H+] (low pH) of the *tissues*, Hb is *protonated* to form HHb+ & release O2.
 - $\ \square$ In the relatively _____ [H+] (high pH) of the lungs, Hb is deprotonated to release H+ & bind O2.


CONCEPT: HEMOGLOBIN CARBONATION & PROTONATION

PRACTICE: Which statement is true about protons binding to hemoglobin?

- a) Protons stabilize the T-state increasing the affinity of hemoglobin for oxygen.
- b) Protons stabilize the T-state decreasing the affinity of hemoglobin for oxygen.
- c) Protons stabilize the R-state increasing the affinity of hemoglobin for oxygen.
- d) Protons stabilize the R-state decreasing the affinity of hemoglobin for oxygen.

Hemoglobin Carbonation & Protonation Recap

•Let's briefly review Hb carbonation & protonation as it relates to the tissues & lungs:

PRACTICE: Alkalemia is a disease associated with an abnormal increase in the pH of a patient's blood due to rapid breathing (hyperventilation). How would alkalemia affect the oxygen binding affinity of the patient's hemoglobin?

- a) P₅₀ and oxygen affinity decrease.
- b) P₅₀ and oxygen affinity increase.
- c) P₅₀ decreases and oxygen affinity increases.
- d) P₅₀ increases and oxygen affinity decreases.
- e) P₅₀ and oxygen affinity remain the same.

PRACTICE: Choose all of the following molecules that, when bound, trigger hemoglobin's transition from T to R state.

- a) CO₂
- b) CO
- c) O₂
- d) 2,3-Bisphosphoglycerate
- e) H+