- ●Mass \_\_\_\_\_ on y-axis & \_\_\_\_ ratio on x-axis).
  - □ Most peaks represent fragments resulting from cleavage of original peptide at only \_\_\_\_\_ peptide bond.
  - □ Can reveal \_\_\_\_\_ protein structure: amino acids identified by m/z \_\_\_\_\_ between peaks.

**EXAMPLE:** Use the mass spectrum to reveal the amino acid composition.



| Amino Acid | MW of Residue (g/mol) |
|------------|-----------------------|
| Alanine    | 71.08                 |
| Asparagine | 137.18                |
| Glycine    | 57.08                 |
| Histidine  | 114.08                |
| Valine     | 99.08                 |

- Mass spectra are typically analyzed from right to \_\_\_\_\_\_ to reveal the peptide sequence.
  - □ MS struggles to differentiate Leu from \_\_\_\_\_.

**PRACTICE:** Use the mass spectrum below to determine the sequence of the peptide.

N-terminal C-terminal



## **B & Y Ions Contribute to MS Spectra**

- •MS ionization fragments most protein molecules only *once* at a \_\_\_\_\_\_ bond; leads to \_\_\_\_\_ prominent sets of ions.
  - 1) \_\_\_\_ ions (always contain the \_\_\_\_-terminal amino acid residue) & peaks read from left to right.
  - 2) \_\_\_\_ ions (always contain the \_\_\_\_-terminal amino acid residue) & peaks read from right to left.

#### **EXAMPLE:**





\*In most cases, its safe to assume mass spectrum is analyzed with y ions & read from right to \_\_\_\_\_\_.

- ●Intermixed b & y ions can show up on a mass spectrum, but y ions are more \_\_\_\_\_ than b ions.
  - $\ \square$  y ion intensity/abundance will often be the most prominent peaks in the spectrum.

PRACTICE: Upon fragmentation of a peptide bond during mass spectrometry, what ions can be detected on the spectrum?

- a) b ions.
- b) y ions.
- c) b & y ions.
- d) lons are deflected but not detected.

**PRACTICE**: Use the mass spectrum below & the indicated y-ion peaks (red) to reveal the sequence of the peptide.



**PRACTICE:** In your mass-spectrometry of a pure protein with an m/z of 1,582, you found peaks of y ions with the following m/z ratios of 1,582, 1396 and 1283. The mass in Daltons for the possible relevant amino acids are provided: Y (163), N (114), W (186), D (115), G (57), L (113) and M (131). From this data, it is obvious that the C-terminal amino acid residue of the 1,582 fragment is:

- a) G.
- b) L.
- c) N.
- d) W.
- e) Can't be determined.

**PRACTICE:** Use the mass spectrum below & the provided chart with amino acid masses to determine the sequence of a hexapeptide (6 amino acid residues). In the mass spectrum, y ion peaks are indicated with "y" while b ion peaks are indicated with "b." The N-terminal residue is given as Leu and the C-terminal residue is given as Lys. Determine the remaining amino acid sequence using either the y ions or the b ions.





| Amino Acid    | Mass of Residue |
|---------------|-----------------|
|               | (g/mole)        |
| Alanine       | 71.08           |
| Arginine      | 156.18          |
| Asparagine    | 114.08          |
| Aspartate     | 115.08          |
| Cysteine      | 103.18          |
| Glutamate     | 129.08          |
| Glutamine     | 128.14          |
| Glycine       | 57.08           |
| Histidine     | 137.18          |
| Isoleucine    | 113.18          |
| Leucine       | 113.18          |
| Lysine        | 128.18          |
| Methionine    | 131.18          |
| Phenylalanine | 147.18          |
| Proline       | 97.08           |
| Serine        | 87.08           |
| Threonine     | 101.08          |
| Tryptophan    | 186.18          |
| Tyrosine      | 163.18          |
| Valine        | 99.08           |