- The Hill Plot is a _____ graph plotting the y-value & x-value of the Hill Equation respectively on the y-axis & x-axis. - •Slope of the line on a Hill Plot (slope = ____) denotes the Hill constant (nH) & the degree of L-binding-site interactions. - \square Recall: for both Mb & Hb, L = O₂, and [O₂] can be expressed with _____ (which means: log[L] \rightarrow log(pO₂)). Equation of a Line: Hill Equation: $y = mX + b \qquad log(\frac{\theta}{1 - \theta}) = n_H log([L]) - n_H log(K_d)$ - •On a Hill Plot, the _____-intercept reveals when θ = _____. - □ Recall: x-intercept is ALWAYS the x-value when y = ____. - \square Note: y-value of Hill Equation ($\log \left(\frac{\theta}{1-\theta}\right)$) will equal zero when the value of θ = _____. ### Mb's Hill Plot - •Since myoglobin (Mb) only has 1-subunit, it is NOT an allosteric protein & has _____ cooperativity. - \Box Recall: $n_H = slope = _$ when there is *no* cooperativity. - \Box Since x-intercept indicates the [L] where θ = _____, x-intercept also indicates K_d (protein affinity for ligand). Mb = ___ subunit = ____ cooperativity (slope = **n**н = 1) #### **Hb's Hill Plot** - •Unlike Mb (which forms a single line), Hb's PL-data seems to form _____ identifiable lines when plotted on a Hill Plot. - □ *Two* of Hb's lines are _____ to Mb's line, meaning they have the *same* slope (slope = ____ = 1). - □ Recall: a slope or n_H of 1 means _____ cooperativity. - ☐ Hb binds its _____ and _____ O₂ non-cooperatively. - ●HOWEVER, Hb's 3rd line has a *different/greater* slope (slope = n_H = _____), suggesting _____ cooperativity. ## Hb's Lowest O2-Affinity State - •Recall: Hb is NOT always displaying cooperativity; Hb binds its _____ & ____ O₂ non-cooperatively (slope = n_H = 1). - ☐ Hb subunits equally & _____ compete for O₂-binding (without cooperativity) until 1st O₂ binds. - □ This line represents Hb's _____ O₂-affinity. - □ Lowest O₂-affinity means _____ K_d for 1_{st} O₂. ### **Hb's Cooperative State** - After the 1st O₂ binds to Hb, Hb subunits begin to display _____ cooperativity (slope = nH = 3). - □ Recall: Hb's O₂-binding behavior explained via a ______ of *concerted* & *sequential* models (n_H ≠ n). - ☐ Hb displays *positive* cooperativity from the 1st bound O₂ up *until* the 3rd O₂ binds. - ☐ Hb subunits are NOT equally competing for O2-binding. ## Hb's Highest O₂-Affinity State - After the 3rd O₂ binds to Hb, the 4th and final O₂ binds _____-cooperatively, just like the 1st O₂ did (slope = nH = 1). - □ Once again, Hb subunits *equally* & *independently* compete for binding to the *last* O₂ (_____ cooperativity). - □ Last unoccupied Hb subunit is in the full R-state experiencing _____ model features (symmetry rule). - □ This line represents Hb's ______ O₂-affinity. - □ Highest O2-affinity means _____ Kd for 4th O2. ### Feature of Concerted Model: ### **Hill Plot Breakdown** ●Hill plots *visually* display **PL**-affinities (K_d) and the degree of ______(n_H) in a PL-interaction. $\log\left(\frac{\theta}{1-\theta}\right) = n_{H}\log(L) - n_{H}\log(K_{d})$ # "Velocity" & "Acceleration" - ●Mb's & Hb's O₂-binding can be thought of as _____ (for O₂-affinity) and _____ (for cooperativity). - $\ \square$ Mb ALWAYS maintains the same, relatively high/medium velocity with $___$ acceleration. - $\hfill\Box$ Hb starts off with low velocity and does NOT begin accelerating \textit{until} it binds it's 1st O2. - □ Once Hb binds 3 O₂, it reaches/maintains its max velocity & stops accelerating. Steady = No "acceleration" = No cooperativity "Velocity" = O₂-affinity "Acceleration" = Positive Cooperativity **PRACTICE:** Which of the following situations would produce a Hill plot with n_H < 1.0? - a) The protein is a single polypeptide with a single ligand binding site. As purified, the protein preparation is heterogeneous, containing some protein molecules that are partially denatured and having a lower binding affinity. - b) The protein is a single polypeptide with two ligand binding sites, each having a different affinity for the ligand. - c) The protein has multiple subunits, each with a single ligand-binding site. Binding of ligand to one site decreases the binding affinity of other sites for the ligand. **PRACTICE:** Label the axis of the Hill Plot below & fill-in the graph with Mb's & Hb's approximate O₂-binding data. PRACTICE: The slope of a Hill plot for hemoglobin _______; whereas that for myoglobin ______. - a) is about 3 in its cooperative state; is 1.0. - b) decreases at low pO₂; is constant at all pO₂. - c) increases at high pO₂; curves upward for all pO₂. - d) Is 1.0; is about 4. - e) Both A and B.