- The Hill Plot is a _____ graph plotting the y-value & x-value of the Hill Equation respectively on the y-axis & x-axis.
- •Slope of the line on a Hill Plot (slope = ____) denotes the Hill constant (nH) & the degree of L-binding-site interactions.
 - \square Recall: for both Mb & Hb, L = O₂, and [O₂] can be expressed with _____ (which means: log[L] \rightarrow log(pO₂)).

Equation of a Line: Hill Equation: $y = mX + b \qquad log(\frac{\theta}{1 - \theta}) = n_H log([L]) - n_H log(K_d)$

- •On a Hill Plot, the _____-intercept reveals when θ = _____.
 - □ Recall: x-intercept is ALWAYS the x-value when y = ____.
 - \square Note: y-value of Hill Equation ($\log \left(\frac{\theta}{1-\theta}\right)$) will equal zero when the value of θ = _____.

Mb's Hill Plot

- •Since myoglobin (Mb) only has 1-subunit, it is NOT an allosteric protein & has _____ cooperativity.
 - \Box Recall: $n_H = slope = _$ when there is *no* cooperativity.
 - \Box Since x-intercept indicates the [L] where θ = _____, x-intercept also indicates K_d (protein affinity for ligand).

Mb = ___ subunit = ____ cooperativity (slope = **n**н = 1)

Hb's Hill Plot

- •Unlike Mb (which forms a single line), Hb's PL-data seems to form _____ identifiable lines when plotted on a Hill Plot.
 - □ *Two* of Hb's lines are _____ to Mb's line, meaning they have the *same* slope (slope = ____ = 1).
 - □ Recall: a slope or n_H of 1 means _____ cooperativity.
 - ☐ Hb binds its _____ and _____ O₂ non-cooperatively.
- ●HOWEVER, Hb's 3rd line has a *different/greater* slope (slope = n_H = _____), suggesting _____ cooperativity.

Hb's Lowest O2-Affinity State

- •Recall: Hb is NOT always displaying cooperativity; Hb binds its _____ & ____ O₂ non-cooperatively (slope = n_H = 1).
 - ☐ Hb subunits equally & _____ compete for O₂-binding (without cooperativity) until 1st O₂ binds.
 - □ This line represents Hb's _____ O₂-affinity.
 - □ Lowest O₂-affinity means _____ K_d for 1_{st} O₂.

Hb's Cooperative State

- After the 1st O₂ binds to Hb, Hb subunits begin to display _____ cooperativity (slope = nH = 3).
 - □ Recall: Hb's O₂-binding behavior explained via a ______ of *concerted* & *sequential* models (n_H ≠ n).
 - ☐ Hb displays *positive* cooperativity from the 1st bound O₂ up *until* the 3rd O₂ binds.
 - ☐ Hb subunits are NOT equally competing for O2-binding.

Hb's Highest O₂-Affinity State

- After the 3rd O₂ binds to Hb, the 4th and final O₂ binds _____-cooperatively, just like the 1st O₂ did (slope = nH = 1).
 - □ Once again, Hb subunits *equally* & *independently* compete for binding to the *last* O₂ (_____ cooperativity).
 - □ Last unoccupied Hb subunit is in the full R-state experiencing _____ model features (symmetry rule).
 - □ This line represents Hb's ______ O₂-affinity.
 - □ Highest O2-affinity means _____ Kd for 4th O2.

Feature of Concerted Model:

Hill Plot Breakdown

●Hill plots *visually* display **PL**-affinities (K_d) and the degree of ______(n_H) in a PL-interaction.

 $\log\left(\frac{\theta}{1-\theta}\right) = n_{H}\log(L) - n_{H}\log(K_{d})$

"Velocity" & "Acceleration"

- ●Mb's & Hb's O₂-binding can be thought of as _____ (for O₂-affinity) and _____ (for cooperativity).
 - $\ \square$ Mb ALWAYS maintains the same, relatively high/medium velocity with $___$ acceleration.
 - $\hfill\Box$ Hb starts off with low velocity and does NOT begin accelerating \textit{until} it binds it's 1st O2.
 - □ Once Hb binds 3 O₂, it reaches/maintains its max velocity & stops accelerating.

Steady = No "acceleration" = No cooperativity

"Velocity" = O₂-affinity

"Acceleration" = Positive Cooperativity

PRACTICE: Which of the following situations would produce a Hill plot with n_H < 1.0?

- a) The protein is a single polypeptide with a single ligand binding site. As purified, the protein preparation is heterogeneous, containing some protein molecules that are partially denatured and having a lower binding affinity.
- b) The protein is a single polypeptide with two ligand binding sites, each having a different affinity for the ligand.
- c) The protein has multiple subunits, each with a single ligand-binding site. Binding of ligand to one site decreases the binding affinity of other sites for the ligand.

PRACTICE: Label the axis of the Hill Plot below & fill-in the graph with Mb's & Hb's approximate O₂-binding data.

PRACTICE: The slope of a Hill plot for hemoglobin _______; whereas that for myoglobin ______.

- a) is about 3 in its cooperative state; is 1.0.
- b) decreases at low pO₂; is constant at all pO₂.
- c) increases at high pO₂; curves upward for all pO₂.
- d) Is 1.0; is about 4.
- e) Both A and B.