CONCEPT: SIZE EXCLUSION CHROMATOGRAPHY

Size Exclusion Chromatography: purifies a protein based on its ______.
Also known as ______-filtration chromatography.
Contrary to gel electrophoresis, ______ proteins elute faster & earlier from the column than smaller proteins.
Stationary phase consists of very ______ beads with cavities engineered to be a specific size.
Large proteins _____ enter the cavities of the beads & take a shorter, faster route through the column.

□ Small proteins enter the cavities of the beads & are _____ down with a longer route through the column.

EXAMPLE: Size Exclusion Chromatography.

*_____ proteins elute from column first.

PRACTICE: In a mixture of 5 proteins (listed below), which protein elutes 2nd in size-exclusion chromatography?

- a) Cytochrome C ($M_r = 13,000$).
- b) Immunoglobulin G ($M_r = 145,000$).
- c) Ribonuclease A ($M_r = 13,700$).
- d) RNA polymerase ($M_r = 450,000$).
- e) Serum albumin ($M_r = 68,500$).

PRACTICE: Which of the following statements is false?

- a) In ion exchange chromatography, the bound proteins are eluted using a salt solution.
- b) Gel filtration chromatography can be used to determine an unknown protein's relative molecular size/mass.
- c) In gel filtration chromatography, the smallest proteins are eluted from the column last.
- d) Separation of proteins in gel filtration chromatography is based on size & net charge of the proteins.
- e) None of them. All above statements are true.

CONCEPT: SIZE EXCLUSION CHROMATOGRAPHY

PRACTICE: A new protein of unknown structure has been purified & gel filtration chromatography reveals that the native protein has a molecular weight of 240 kDa. Chromatography in the presence of 6 M guanidine hydrochloride (GuHCI), a chaotropic agent that has a similar effect on proteins as urea, yields a single absorbance peak corresponding to a protein of M_r 60 kDa. Chromatography in the presence both of 6 M guanidine hydrochloride and 10 mM β-mercaptoethanol (β-ME) yields peaks for proteins of M_r 34 kDa and 26 kDa. Using this data, which option best describes the structure of this protein? Hint: sketch a visual of the protein after each chemical treatment.

- a) A homotetramer (4 identical 60 kDa subunits); each subunit is a heterodimer of 2 disulfide-linked chains (34 & 26 kDa).
- b) A heterooctomer (8 different subunits); four subunits each of 34-kDa & 26 kDa, all held together via disulfide bonds.
- c) A homodimer (2 identical 120 kDa subunits); each subunit is a a homodimer of 2 disulfide-linked chains (60 kDa each).
- d) A heterotetramer (4 different subunits); each subunit is a homodimer of 2 disulfide-linked chains (60 kDa each).

PRACTICE: To answer the questions A, B & C below, use the provided chart with the properties of the four proteins.

A) What is the order of elution of the proteins from a size-exclusion chromatography column?

a)
$$A \rightarrow B \rightarrow C \rightarrow D$$
.

b)
$$D \rightarrow B \rightarrow A \rightarrow C$$
.

c)
$$B \rightarrow D \rightarrow A \rightarrow C$$
.

d)
$$C \rightarrow A \rightarrow D \rightarrow B$$
.

Protein	MW	pl	Charge at:		
			pH = 6	pH= 7	pH = 8
Α	62,457	8.1	32.2	10.9	0.7
В	115,471	5.69	-7.3	-29.6	-42
С	17,183	7.7	7.4	2.1	-0.7
D	69,366	6.29	3.4	-3.4	-20.2

- B) Which pH is best for separating the proteins using anion-exchange chromatography?
 - a) pH = 6.
- b) pH = 7.
- c) pH = 8.
- C) In what order would the proteins elute from the anion-exchange chromatography column?
- a) $A \rightarrow C \rightarrow D \rightarrow B$.
- b) $D \rightarrow A \rightarrow B \rightarrow C$.
- c) $B \rightarrow D \rightarrow C \rightarrow A$.
- d) $C \rightarrow B \rightarrow D \rightarrow A$.