CONCEPT: GIBBS FREE ENERGY

- •Recall the Gibbs free energy equation: $\Delta G = \Delta H T\Delta S$
- •Gibbs free energy: energy available to do _____.
 - \square Work is done when concentrations in a system _____ (no work is done at equilibrium, $\Delta G = 0$).
 - □ Concentrations within a system influence the *direction* of a reaction.

Reaction Direction

- •Cellular reactions are almost *never at* due to several factors.
- [Products] •When a reaction is *not* at equilibrium, the <u>reaction quotient</u> (**Q**) replaces the equilibrium constant: $\mathbf{Q} = \frac{\mathbf{Products}}{\mathbf{[Reactants]}}$
 - Principle: when equilibrium is disturbed, the reaction direction proceeds to *restore* equilibrium.

EXAMPLE: Consider the reaction below & complete the chart:

$$CO_{(g)} + 2H_{2(g)} \longrightarrow CH_3OH_{(g)}$$

$$\mathbf{Q} = \frac{\begin{bmatrix} & 1 \\ & \end{bmatrix} \begin{bmatrix} & 1 \end{bmatrix}}{\begin{bmatrix} & 1 \end{bmatrix}}$$

$$Q = \frac{[]}{[]]}$$
 $K_{eq} = \frac{[CH_3OH]_{eq}}{[CO]_{eq}[H_2]_{eq}^2}$

Comparing Q & K _{eq}	Reaction Direction
Q < K _{eq}	
Q > K _{eq}	
Q = K _{eq}	

Reaction Under Standard Conditions®

- Standard conditions allow scientists to compare different reactions under the same conditions.
- Equilibrium constant can be used to calculate the change in free energy under (ΔG°).
 - \Box ΔG is the actual change in free energy of a system under any condition.

EXAMPLE:

Gibbs Free Energy Under Standard Conditions°

$$\Delta G^{\circ} = -RT \ln(K^{\circ}_{eq})$$

Standard Conditions^o 8.315 J/mol*K Pressure Concentration ->

Reaction Under Physiological Conditions

- •Standard conditions occur in a test tube in a lab, but *physiological* conditions _____ within biological systems.
 - \square ΔG° can be used to determine the *actual* change in free energy of a system under any condition (ΔG).

EXAMPLE: Calculate ΔG° & ΔG for the given reaction:

Glyceraldehyde-3-phosphate (G3P) Dihydroxyacetone-phosphate (DHAP)

Gibbs Free Energy Under Any Conditions

$$\Delta G = \Delta G^{\circ} + RT \ln(Q)$$

$$\mathbf{K}^{\circ}_{\text{eq}} = \frac{[\text{Products}]_{\text{eq}}}{[\text{Reactants}]_{\text{eq}}} = \frac{[]}{[]} = 0.0475$$

$$\Delta G =$$

CONCEPT: GIBBS FREE ENERGY

PRACTICE: Consider a reaction where K_{eq} =1.6 but Q = 3.19. What direction will the reaction proceed?

- a) Forward.
- b) Reverse.
- c) Forward & reverse reactions proceed equally.
- d) Not enough information provided to make conclusions.

PRACTICE: At equilibrium, the reaction $A \rightleftharpoons B + C$ has the following component concentrations: [A] = 3 mM, [B] = 4 mM, and [C] = 10 mM. What is the standard free energy change for the reaction & is it endergonic or exergonic?

- a) -6418 J
- b) 6418 J
- c) 10,698 J
- d) -10,698 J

PRACTICE: ΔG° =141.7 kJ for the following reaction. Calculate ΔG : T=10°C, [SO₃] = 25mM, [SO₂] = 50mM, & [O₂] = 75 mM.

$$2 SO_3(g) \rightleftharpoons 2 SO_2(g) + O_2(g)$$

- a) -6,437 J
- b) 39,938 J
- c) -155,127 J
- d) 138,865 J