CONCEPT: STEADY-STATE CONDITIONS

- •During an enzyme-catalyzed reaction, the [____] quickly reaches a constant value (referred to as ______-state).
 - □ Steady-state is an important _____ that Biochemists make when studying enzyme kinetics.
 - □ Pre-Steady-State: describes conditions that exist _____ the [ES] reaches a stable point.

Pre-Steady-State

- •Initially, at the very beginning of an enzyme-catalyzed reaction, the following ____ conditions exist for just a few μ-seconds:
 - 1) [S] is _____. 2) Free [E] is ____. 3) [ES] is ____. 4) [P] is ____.
- •As the enzyme-catalyzed reaction begins, concentrations of substances above *change* in ______ directions.
 - □ In the pre-steady-state, [ES] continuously _____ until a period called steady-state is reached.

$$E + S \xrightarrow{K_1} ES \xrightarrow{K_2} E + P$$

Steady-State Conditions

- •______-state: a period during an enzyme-catalyzed reaction where the [ES] stays the ______.
 - □ Rate of ES-complex association _____ the rate of ES-complex dissociation.
 - \Box If [ES] remains _____, that means that $V_1 = V_{-1} + V_2$
 - □ The Michaelis-Menten enzyme kinetics ______ is derived from these steady-state conditions.

PRACTICE: True or false: A reaction system at steady-state must also be at equilibrium. a) True.

b) False.

CONCEPT: STEADY-STATE CONDITIONS

K_m Derived Under Steady-State Conditions

• Recall: Both the _____ & the Michaelis-Menten equation are derived/defined under steady-state conditions.

PRACTICE: The steady state assumption, as applied to enzyme kinetics, implies:

a) $K_m = K_d$.

d) The K_m is equivalent to the cellular substrate concentration.

b) $K_m = K_s$

e) The maximum velocity (V_{max}) occurs when the enzyme is saturated.

c) $k_{-1} = k_1 + k_2$.

f) The ES complex is formed and broken down at equivalent rates.

PRACTICE: Draw the curves that show the appropriate relationships between the variables in each of the plots below for a simple enzyme-catalyzed reaction that follows Michaelis-Menten kinetics.

