CONCEPT: ALLOSTERIC KINETICS

- Allosteric enzymes are easy to identify because they behave very ______ from Michaelis-Menten enzymes.
 - □ Respond differently to changes in [S] and the presence of _____.
- ●Most allosteric enzymes display a _____ ("S"-shaped) curve on a kinetics plot instead of a rectangular hyperbola.
 - □ _____ is the *allosteric enzyme* equivalent of the K_m for Michaelis-Menten enzymes.

Allosteric Enzymes on Lineweaver-Burk-Plots

•Allosteric enzyme kinetic data does _____ form a straight line on a Lineweaver-Burk plot.

PRACTICE: Which of the following statements regarding allosteric kinetics is false?

- a) The rate of an allosteric enzyme reaction is dependent on substrate concentration [S].
- b) The reaction velocity and substrate concentration always proportionally change in a Lineweaver-Burk plot.
- c) At saturating [S], the kinetics of an allosteric enzyme will follow the Michaelis-Menten model.
- d) Allosteric enzymes display second order kinetics leading to sigmoidal curvature on a kinetics plot.
- e) None are false because all of the above are true.

CONCEPT: ALLOSTERIC KINETICS

<u>Threshold Effect of Allosteric Enzymes</u>

At very _____ [S], Michaelis-Menten-enzymes are _____ sensitive to Δ[S] than allosteric enzymes.
□ HOWEVER; a _____ [S] is reached where _____ enzymes are much more sensitive to Δ[S].
□ V₀ of allosteric enzymes can approach V_{max} within a smaller, more _____ range of [S].
□ This creates a _____ effect for many allosteric enzymes that Michaelis-Menten enzymes don't have.
Threshold effect: below a certain [___], there's little to no allosteric enzyme activity (threshold [S] acts as "on/off" switch).

PRACTICE: Because of the _____ substrate-binding-site(s) & conformation(s) on an allosteric enzyme, the range of [S] to reach the V_{max} is _____ for allosteric enzymes than it is for Michaelis-Menten enzymes.

- a) Single, smaller.
- c) Multiple, narrower.
- b) Single, greater.
- d) Multiple, wider.