CONCEPT: FIBROUS AND GLOBULAR PROTEINS

•	proteins: relatively ins	, linear strands or sheets.	
	□ Usually only contain	type of secondary structure & have a	tertiary structure.
	□ Function mostly as	proteins providing support, shape	& external protection.
EXAI	MPLE: Fibrous structure of α-k	eratin, collagen & silk fibroin.	

PRACTICE: Why is collagen insoluble?

- a) The polar side chains of its residues highly interact with water.
- b) Its hydrophobic residues exposed on its surface do not fold away into a core in its linear structure.
- c) Its long, linear structure increases its surface area, minimizing residue contact with water.
- d) The lack of multiple secondary structures indirectly correlates with its lack of hydrophobic residues.

Globular Proteins

● Globular proteins: soluble protein	s that fold into a compact spheric	cal or	_shape.	
□ Often contain	_ tertiary structures with	_ types of secondary	γ structure (ex. α -helices & β sheets	;)
□ Function mostly as	& regulatory proteins.			

EXAMPLE: Globular protein structure.

PRACTICE: Which of the following statements concerning protein structure is true?

- a) All globular proteins, including myoglobin and its 8 α-helices, have quaternary structure.
- b) Disulfide bond formation in fibrous proteins is incredibly rare due to the lack of a compact fold.
- c) Enzyme structures tend to have significantly more beta turns than silk fibroin or α-keratin.
- d) Hemoglobin is more soluble than collagen as a result of having a lower variety of motifs.