CONCEPT: EQUILIBRIUM CONSTANT

•4 features characterize biochemical reactions: 1) Spontaneity, 2) ______, 3) Directionality, 4) Velocity.

EXAMPLE:

Equilibrium

- □ No _____ change in *concentrations* of *reactants* or *products* (forward reaction rate = reverse reaction rate).
- \square No change in free energy (____ = 0).
- ☐ At equilibrium, a reaction system's energy is at its _____ (most stable).
- □ The _____ of product concentration to reactant concentration is *constant*.
- •All reactions proceed toward ______ equilibrium.

EXAMPLE:

Equilibrium Constant (Keq)

- ●Ratio of product concentrations over reactant concentrations at *equilibrium* is called the equilibrium _____ (K_{eq}).
 - $\hfill\Box$ Keq changes with _____(T), but in biological systems, if not given, we assume T is ~298K.

EXAMPLE: Equilibrium Constant Equation

Equilibrium constant =
$$\mathbf{K}_{eq} = \frac{[Products]_{eq}}{[Reactants]_{eq}}$$

$\kappa_{\sf eq}$	Products vs. Reactants
K _{eq} = 1	[Products] _{eq} [Reactants] _{eq}
K _{eq} < 1	[Products] _{eq} [Reactants] _{eq}
K _{eq} > 1	[Products] _{eq} [Reactants] _{eq}

- ●When there are multiple products/reactants, their concentrations are _____ to get the K_{eq}.
 - □ Coefficients (#'s in front of molecules) are included into K_{eq} as _____.

EXAMPLE: K_{eq} with multiple products/reactants & coefficients.

$$aA + bB \longrightarrow cC + dD$$

Reactants Products

$$\mathbf{K}_{\text{eq}} = \frac{[\]\ [\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\]}$$

CONCEPT: EQUILIBRIUM CONSTANT

PRACTICE: Calculate the equilibrium constant for the reaction below:

$$N_{2(g)}$$
 + $3 CI_{2(g)}$ $\stackrel{\textstyle \sim}{=}$ $2 NCI_{3(g)}$

Equilibrium Concentrations: 0.15M 0.25M 0.50M

- a) 106.67
- b) 43.12
- c) 0.0094
- d) 133.89

PRACTICE: What is the equilibrium constant expression for the following reaction?

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

a)
$$\frac{2[NH_3]}{3[N_2][H_2]}$$

b)
$$\frac{[N_2][H_2]^3}{[NH_3]^2}$$

c)
$$\frac{3[N_2][H_2]}{2[NH_3]}$$

d)
$$\frac{[NH_3]^2}{[N_2][H_2]^3}$$

 $\textbf{PRACTICE:} \ \ \text{Calculate the } K_{\text{eq}} \ \text{for the following reaction to determine which of the following statements is true.}$

$$O_{2(g)} + 2F_{2(g)} \rightleftharpoons 20F_{2(g)}$$

Equilibrium Concentrations: $O_2 = 0.2 \text{ M}$ $F_2 = 0.3 \text{ M}$ $OF_2 = 0.5 \text{ M}$

- a) Reactants are favored.
- b) Products are favored.
- c) Reactants & products are equally favored.
- d) Not enough information provided to make conclusions.