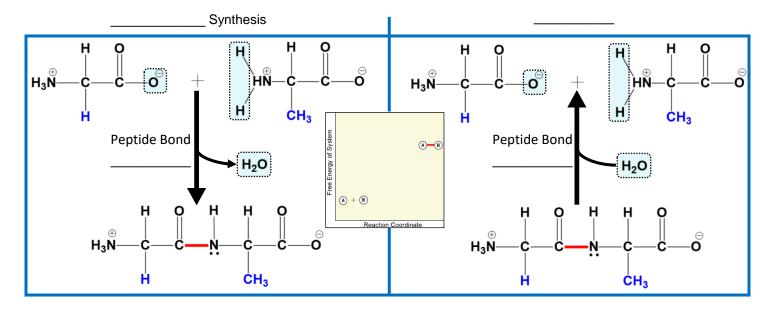
CONCEPT: PEPTIDE BOND

•Free amino acids can be linked together via _____ bonds.

□ *Peptide Bonds*: the _____ covalent linkages between amino acids in a polypeptide chain.


□ Total # of peptide bonds is _____ less than the total # of amino acids in a chain.

• Peptide bonds form via *endergonic* ______ synthesis reactions.

☐ Molecule is dehydrated by losing _____ during peptide bond formation.

□ *Hydrolysis*: the ______ exergonic reaction that cleaves a peptide bond.

EXAMPLE: Peptide Bond Formation & Breakdown. Circle the α -carbons (C_{α}).

PRACTICE: Considering that peptide bond hydrolysis is exergonic, how is the stability of a peptide bond accounted for?

- a) Despite the thermodynamic favorability of hydrolysis, peptide bond formation is more favorable.
- b) The numerous peptide bonds in a typical protein synergistically make hydrolysis unfavorable.
- c) Peptide bonds are only stable and avoid hydrolysis in cellular environments.
- d) Though peptide bond hydrolysis is thermodynamically favorable, there is a high energy of activation.

PRACTICE: Highlight the peptide bonds in the figure below & circle all the α-carbons. How many peptide bonds are there?

CONCEPT: PEPTIDE BOND

PRACTICE: Which of the following best represents the backbone atom arrangement of two peptide bonds?

- b) C_{α} ----N---- C_{α} .
- c) C----N----C α ----C----N.
- d) C_{α} ----C----N---- C_{α} ----C----N.
- e) C_{α} ---- C_{α} ---- C_{α} ---- C_{α} ---- C_{α} ---- C_{α}

PRACTICE: Circle all the peptide bonds in the tripeptide structure below?