CONCEPT: HEMOGLOBIN BINDING IN TISSUES & LUNGS

Hemoglobin Binding to CO₂ & H+

- Bohr Effect: describes the effect of [____] AND pH ([____]) on hemoglobin's binding & release of O2.
- ●Under low O₂ conditions, Hb _____ O₂ but can bind & transport CO₂ (HbCO₂) and H+ (HHb+).
 - □ CO₂ & H₊ act as ______-tropic allosteric ______ to Hb's O₂-binding activity.
 - ☐ Hb carbonation & protonation both stabilize Hb's _____ state (causing Hb's release of O₂).

Hb Releases O2 in Tissues

- •In muscle tissues, O₂ is consumed (_____ pO₂ ≈ 20 torr) & lots of _____ is produced by metabolism (_____ [CO₂]).
 - 1 High amounts of CO2 produced by respiring tissues diffuses into the capillaries & into ______.
 - 2 _____ anhydrase inside RBCs catalyzes CO2 + H2O == H2CO3, which breaks up into HCO3- & H+.

- 3 Equilibrium shift towards H+ & tissues' lactic acid production _____ [H+] (decreases pH to ~7.2) in tissues.
- 4 Recall: Hb near the tissues _____ CO₂ & H+ while _____ O₂ (Hb ___ State → Hb ___ State).
- **5** Recall: Myoglobin (_____) in tissues has a *stronger* O₂-affinity than Hb & facilitates O₂-diffusion into tissues.

CONCEPT: HEMOGLOBIN BINDING IN TISSUES & LUNGS

Hb Binds O2 in Lungs

- ●In the lungs, lots of O₂ is *inhaled* (______pO₂ ≈ 100 torr) & lots of CO₂ is _____ (____[CO₂]).
 - 1 Causes reaction equilibrium to shift towards CO₂, ______ [H₊] (increases pH to ~7.6) in the lungs.
 - 2 _____ CO2 in the *lungs* via ____halation causes CO2 diffusion into the lungs.
 - 3 _____ O₂ in the *lungs* via ____halation causes O₂ diffusion into the capillaries & into _____.
 - 4 When near the lungs, Hb _____ O₂ while ____ CO₂ and H+ (Hb ___ State → Hb ___ State).
 - **5** Oxygenated Hb ready to deliver O₂ to tissues.

PRACTICE: In the lungs, the _____ pressure of CO₂ causes hemoglobin to _____ CO₂ and H₊. The _____ pressure of O₂ causes O₂ to _____ hemoglobin, allowing for its transportation to the tissues.

- a) Low; Bind; Low; Release.
- b) High; Bind; Low; Release.
- c) High; Bind; High; Release.
- d) Low; Release; High; Bind.
- e) High; Release; Low; Bind.
- f) Low; Release; Low; Bind.

CONCEPT: HEMOGLOBIN BINDING IN TISSUES & LUNGS

PRACTICE: Which of the following explains why hemoglobin in RBCs binds to O₂ in the lungs but releases O₂ in muscle tissues? (Select all that apply).

- a) pH is lower in the lungs than in the tissues.
- b) *p*CO₂ is lower in the lungs than in the tissues.
- c) BPG is produced at higher levels in tissues compared to the lungs.
- d) The temperature of the lungs is generally higher than the temperature in actively contracting muscle tissues.
- e) None of the above are true.

PRACTICE: How is the vast majority of carbon dioxide transported in the blood from the tissues to the lungs?

- a) As diffused gas bubbles of CO₂, just as in carbonated soft drinks.
- b) As bicarbonate ions (HCO₃-).
- c) As carbamate groups bound directly to deoxyhemoglobin.
- d) As carbon monoxide.
- e) As carbon compounds and oxygen radicals.