## **CONCEPT: OSMOSIS**

| CONCEPT: OSIVIOSIS                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------|
| • Diffusion: substance movement from high concentrations to low concentrations of the same substance.                     |
| ● <u>Osmosis</u> : diffusion of a solvent (usually) across a <i>semi-permeable</i> membrane.                              |
| □ <u>Osmotic pressure</u> : pressure required to prevent the flow of solvent.                                             |
| Osmosis direction depends on the (or the relative concentration of solutes dissolved in the solutions).                   |
| □ solutions have the <i>same solute</i> concentration.                                                                    |
| □ solutions have <i>lower <u>solute</u></i> concentrations.                                                               |
| □ solutions have <i>higher</i> <u>solute</u> concentrations.                                                              |
| <b>EXAMPLE:</b> Label the tonicity of the outside solution.                                                               |
|                                                                                                                           |
| Outside Outside Outside Inside                                                                                            |
| Osmosis Direction                                                                                                         |
| ●H₂O will move from to solutions if solutes cannot diffuse across the membrane.                                           |
| □ Water moves toward the more concentrated solute solution to dilute it until it is                                       |
| <ul> <li>Water still moves from higher concentrations of <u>water</u> to lower concentrations of <u>water</u>.</li> </ul> |
| □ <u>Hypo</u> tonic solutions: lower solute concentrations but H₂O concentration.                                         |
| □ <u>Hyper</u> tonic solutions: higher solute concentration but H₂O concentration.                                        |
| EXAMPLE: Direction of Osmosis  HYPO Lower [solute] Higher [H <sub>2</sub> O]                                              |
| Results of Osmosis                                                                                                        |
| ●Hyp_tonic environments: cause cells to swell like a hipp & potentially lyse (rupture/burst).                             |
| □ Cells with do <i>not</i> lyse in hypotonic solutions (membrane expansion prevented).                                    |
| □ Preferred by <i>plant</i> cells due to increased (water pressure on cell membrane).                                     |
| ●Hyptonic environments: dehydrate cells like a hyper-kid gets dehydrated.  Hyper-kids get dehydrated.                     |
| Environment: Hypotonic Isotonic Hypertonic Environment: Hypotonic Isotonic Hypertonic                                     |
| Animal Cells Plant Cells                                                                                                  |

## **CONCEPT: OSMOSIS**

PRACTICE: A) What is the tonicity of the outside solution in comparison to the cell?

- a) Hypotonic
- b) Isotonic
- c) Hypertonic
- d) electrotonic



- a) Inside → Outside
- b) Outside → Inside
- c) Water flows in both directions.
- d) No flow of water.



**PRACTICE:** Plants become turgid when placed in this type of solution:

- a) Hypotonic
- b) Isotonic
- c) Hypertonic
- d) Megatonic