CONCEPT: ACID DISSOCIATION CONSTANT

1) Acid Dissociation Constant (Ka)

- •Acid dissociation constant (K_a): is the K_{eq} for an acid's dissociation & a _____ measure of the strength of an acid.
 - □ Also known as the _____ constant since it expresses the tendency of an *ion* to dissociate from a molecule.
 - $\hfill\Box$ The greater the K_a , the _____ the acid.

- Acids: contain *multiple* acidic H atoms that can dissociate to H⁺.
 - □ There is one K_a for each acidic H.

EXAMPLE: Calculate K_a of uric acid $(C_5H_4N_4O_3)$ if $[C_5H_4N_4O_3]_{eq} = 4.07 \times 10^{-3} \text{ M} \& [C_5H_3N_4O_3]_{eq} = 7.27 \times 10^{-4} \text{ M}.$

- a) $K_a = 9.7 \times 10^{-5}$ c) $K_a = 6.4 \times 10^{-10}$
- b) $K_a = 4.2 \times 10^{-8}$ d) $K_a = 1.3 \times 10^{-4}$

PRACTICE: Calculate K_a of propionic acid (CH₃CH₂CO₂H) if [CH₃CH₂CO₂H]_{eq} = 0.2 M & [CH₃CH₂CO₂-]_{eq} = 1.62 x 10-3 M.

- a) $K_a = 1.3 \times 10^{-5}$
- c) $K_a = 3.9 \times 10^{-12}$
- b) $K_a = 7.8 \times 10^{-10}$ d) $K_a = 5.1 \times 10^{-4}$

CONCEPT: ACID DISSOCIATION CONSTANT

2) <u>pK</u>a

- $\bullet K_a \text{ values are sometimes inconveniently large/small but can be expressed on a } \underline{\hspace{1cm}} \text{scale with } pK_a \text{ values.}$
 - $\hfill\Box$ The greater the pKa, the _____ the acid.

EXAMPLE:

$$\mathbf{pK}_{a} = -\log \mathbf{K}_{a} = \log \frac{1}{\mathbf{K}_{a}}$$

	Weak Acid	Strong Acid
Example:	CH₃COOH	HCI
K _a :	1.76 x 10 ⁻⁵	1.3 x 10 ⁶
pK _a :		

PRACTICE: Which of the following is the strongest acid listed?

- a) Lactic acid, $K_a = 1.38 \times 10^{-4}$
- b) Formic acid, $pK_a = 3.75$

- c) Acetic acid, $K_a = 1.76 \times 10^{-5}$
- d) Propionic acid, $pK_a = 4.87$