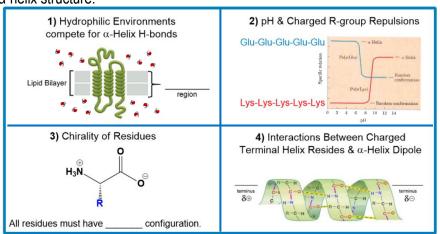
CONCEPT: ALPHA HELIX DISRUPTION


•Several factors can _____ or prevent formation of the α-helix structure.

1. α-helices typically found ______ the *hydrophobic* area within a membrane.

2. α-helices are ______ to destabilizing interactions between neighboring residues (ex. bulky/charged groups).

3. All α-helix residues must have the same

EXAMPLE: Disrupting α -helix structure.

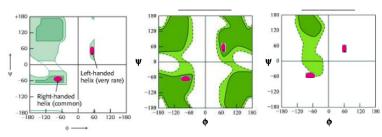
PRACTICE: Why does poly-L-Glutamate adopt an α-helical structure at low pH but a random conformation above pH 5?

a) Positively charged residues destabilize α -helices.

- c) Negatively charged residues destabilize α -helices.
- b) At high pH, the (-) Glu repulsion destabilizes α-helices.
- d) < pH 5, the (+) Glu repulsion destabilizes α -helices.

5) Gly & Pro Disrupt α-Helices

• α -helix formation requires specific ϕ and ψ bond ______ to stabilize the required hydrogen bonds.


□ Recall: α-helix bond angles appear in the ______ left quadrant of a Ramachandran plot.

•Both _____ & ____ amino acids *destabilize* α-helices.

□ Glycine's R-group (H) is too _____ and steric hindrance cannot limit its bond angles enough to conform.

Pro residues lack a _____ atom for hydrogen bonding & create a _____ in the α-helix.

EXAMPLE: Gly & Pro disrupt α -helices.

PRACTICE: Which of the following peptides is more likely to take up an α-helical structure and why?

a) LKAENDEAARAMSEA.

b) CRAGGFPWDQPGTSN.

CONCEPT: ALPHA HELIX DISRUPTION

PRACTICE: An α-helix would be destabilized most by:

- a) DNA missense mutation leading to a Gly residue placed in the α -helix sequence.
- b) Interactions between neighboring Asp & Arg residues.
- c) A hydrophobic environment competing for hydrogen bonds.
- d) DNA missense mutation leading to a Pro residue placed in the α-helix sequence.
- e) A net electric dipole spanning several peptide bonds throughout the α -helix.

PRACTICE: At pH 6.8, which of the following peptides is least likely to form an α-helix?

Peptide # 1: RSEDNFGAPKSILWE Peptide # 2: DQKASVEMAVRNSGK

- a) Peptide # 1.
- b) Peptide # 2.
- c) Both peptides are equally likely to form an α -helix.
- d) Neither peptide is likely to form an α -helix.

PRACTICE: Why does proline often "break" an alpha helix?

- a) Its amino group has no free hydrogen to bond with a carbonyl because of the imino ring.
- b) It is impossible for it to adopt the psi and phi angles required to form an alpha helix.
- c) Its peptide bond often adopts the trans conformation, unlike other amino acids.
- d) Its peptide bond flips frequently between the cis and trans conformations.