## **CONCEPT:** CALCULATING K<sub>M</sub>

- •K<sub>m</sub> can also be calculated in \_\_\_\_\_ ways.
  - 1) K<sub>m</sub> is also calculated by algebraic \_\_\_\_\_\_ of the Michaelis-Menten or Lineweaver-Burk equations.

**EXAMPLE:** Algebraically rearrange the MM-equation to solve for K<sub>m</sub>.



- **2)**  $K_m$ : ratio of the sum of an ES-complexes' two \_\_\_\_\_\_ rates  $(k_{-1} \& k_2)$  over its association rate  $(k_1)$ .
  - $\hfill\Box$  Additionally, this also correlates with the ratio of [\_\_\_][\_\_\_] over [\_\_\_\_].
  - □ Small K<sub>m</sub> means \_\_\_\_\_ ES-complex dissociation and \_\_\_\_\_ ES-complex formation.

$$V_0 = \frac{\kappa_1}{\kappa_{-1}} = \frac{\kappa_2}{\kappa_{-1}} = \frac{\kappa_2}{\kappa_{-1}}$$

 $\textbf{EXAMPLE:} \ \ \text{The following rate constants were measured for a simple enzyme-catalyzed reaction.} \ \ \text{Determine the } \ K_m.$ 

$$k_1 = 2 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$$
,  $k_{-1} = 1 \times 10^3 \text{ s}^{-1}$ ,  $k_2 = 5 \times 10^3 \text{ s}^{-1}$ 

- a) 3 x 10<sup>-5</sup> M.
- b) 2.5 x 10<sup>-2</sup> M.
- c)  $3 \times 10^5 \text{ M}$
- d)  $4.0 \times 10^{-4} M$ .

## **CONCEPT:** CALCULATING K<sub>M</sub>

**PRACTICE:** To determine the K<sub>m</sub> from a Lineweaver-Burk plot you would:

- a) Multiply the reciprocal of the x-axis intercept by -1.
- c) Take the reciprocal of the x-axis intercept.
- b) Multiply the reciprocal of the y-axis intercept by -1.
- d) Take the reciprocal of the y-axis intercept.

**PRACTICE:** The  $V_{max}$  for an enzyme is 9 mg/min. Calculate the  $K_m$  if the [S] = 5 mM when the  $V_0$  = 3 mg/min.

- a) 100 M.
- b) 10 M.
- c) 10 mg.
- d) 10 mM.

**PRACTICE:** Calculate the  $K_m$  of an enzyme using Michaelis-Menten kinetics if the forward rate constant for ES formation is  $4.3 \times 10^6 \, M^{-1} s^{-1}$ , the reverse rate constant for ES dissociation into E + S is  $2.4 \times 10^2 \, s^{-1}$ , and the forward rate constant for ES dissociation into E + P is  $1.2 \times 10^3 \, s^{-1}$ .

- a) 3.35 x 10<sup>-4</sup> M<sup>-1</sup>.
- b)  $3.58 \times 10^3 M$ .
- c)  $3.85 \times 10^3 \text{ M}^{-1}$ .
- d) 3.35 x 10<sup>-4</sup> M.