CONCEPT: ALLOSTERIC EFFECTORS

◆Allosteric effectors: regulatory molecules binding to ______ sites to affect an allosteric enzyme's _____.
_____ tropic effectors: molecules affecting an allosteric enzyme's activity on a _____ molecule.
_____ tropic effectors: molecules affecting an allosteric enzyme's activity on that _____ molecule.
_____ itself will act as the allosteric effector.

EXAMPLE: Heterotropic vs. Homotropic Effectors.

Activators vs. Inhibitors

●Allosteric effectors also grouped in _____ other ways based on their result: 1) *Activators* (+) 2) *Inhibitors* (-) □ ____ (+): stabilize the ____ State (*decreasing* L₀) & shifting the sigmoidal curve to the ____. □ ___ (-): stabilize the ____ State (*increasing* L₀) & shifting the sigmoidal curve to the ____.

EXAMPLE: Heterotropic Effects of ATP & CTP on the Allosteric Enzyme Aspartate Transcarbamoylase (ATCase).

CONCEPT: ALLOSTERIC EFFECTORS

PRACTICE: L-arginine is capable of binding to and activating N-acetylglutamate synthase. Since L-arginine is neither a substrate nor a product of this enzyme, how would this effector be classified?

- a) (-) homotropic effector.
- b) (+) heterotropic effector.
- c) (-) heterotropic effector.
- d) (+) homotropic effector.

PRACTICE: Considering that O_2 triggers hemoglobin to switch from its low affinity (T) state to its high affinity (R) state to bind more O_2 , what kind of allosteric effector is O_2 relative to hemoglobin?

- a) Heterotropic; activator.
- b) Homotropic; inhibitor.
- c) Heterotropic; inhibitor.
- d) Homotropic; activator.

PRACTICE: Which of the following statements about allosteric control of enzymatic activity is false?

- a) Allosteric effectors give rise to sigmoidal V₀ vs. [S] kinetic plots.
- b) Allosteric proteins are generally composed of several subunits.
- c) An allosteric effector may either inhibit or activate an enzyme.
- d) Binding of the allosteric effector to the enzyme changes the conformation of the enzyme.
- e) Heterotropic allosteric effectors compete with the substrate for binding sites on the enzyme.