CONCEPT: ALLOSTERIC EFFECTORS ◆Allosteric effectors: regulatory molecules binding to ______ sites to affect an allosteric enzyme's _____. _____ tropic effectors: molecules affecting an allosteric enzyme's activity on a _____ molecule. _____ tropic effectors: molecules affecting an allosteric enzyme's activity on that _____ molecule. _____ itself will act as the allosteric effector. **EXAMPLE:** Heterotropic vs. Homotropic Effectors. ## Activators vs. Inhibitors ●Allosteric effectors also grouped in _____ other ways based on their result: 1) *Activators* (+) 2) *Inhibitors* (-) □ ____ (+): stabilize the ____ State (*decreasing* L₀) & shifting the sigmoidal curve to the ____. □ ___ (-): stabilize the ____ State (*increasing* L₀) & shifting the sigmoidal curve to the ____. **EXAMPLE**: Heterotropic Effects of ATP & CTP on the Allosteric Enzyme Aspartate Transcarbamoylase (ATCase). ## **CONCEPT: ALLOSTERIC EFFECTORS** **PRACTICE:** L-arginine is capable of binding to and activating N-acetylglutamate synthase. Since L-arginine is neither a substrate nor a product of this enzyme, how would this effector be classified? - a) (-) homotropic effector. - b) (+) heterotropic effector. - c) (-) heterotropic effector. - d) (+) homotropic effector. **PRACTICE:** Considering that O_2 triggers hemoglobin to switch from its low affinity (T) state to its high affinity (R) state to bind more O_2 , what kind of allosteric effector is O_2 relative to hemoglobin? - a) Heterotropic; activator. - b) Homotropic; inhibitor. - c) Heterotropic; inhibitor. - d) Homotropic; activator. PRACTICE: Which of the following statements about allosteric control of enzymatic activity is false? - a) Allosteric effectors give rise to sigmoidal V₀ vs. [S] kinetic plots. - b) Allosteric proteins are generally composed of several subunits. - c) An allosteric effector may either inhibit or activate an enzyme. - d) Binding of the allosteric effector to the enzyme changes the conformation of the enzyme. - e) Heterotropic allosteric effectors compete with the substrate for binding sites on the enzyme.