CONCEPT: INTRODUCTION TO PROTEIN-LIGAND INTERACTIONS

- •_____: any small substance that reversibly binds & forms a complex with a larger biomolecule.
 - □ Reversible binding of a protein (____) to a ligand (____) is described by a simple expression: P + L ⇒ PL

Protein-Ligand Rate Constants

- Recall: every reaction has a _____ constant (k) indicating reaction rate efficiency/probability under set conditions.
 - \Box The *higher* the k, the ______ likely the reaction is _____.
- Association Rate Constant (ka): rate constant for free protein & ligand (P + L) ______ into a complex (PL).
- Dissociation Rate Constant (kd): rate constant for protein-ligand-complex (PL) ______ back into free P + L.
 - \Box _____ of k_a and k_d describe the reversible binding of a protein & ligand.

EXAMPLE: PL Association & Dissociation Rate Constants:

PRACTICE: Which of the following rate law expressions represents a protein-ligand interaction at equilibrium?

- a) $[PL]k_a = [P][L]k_d$.
- b) $[PL][P]k_a = [L]k_d$.
- c) $[L][PL]k_d = [P]k_a$.
- d) [L][P] $k_a = [PL]k_d$.

PRACTICE: Calculate the dissociation rate constant (k_d) at equilibrium if [P] = 20 mM, [L] = 10 mM, [PL] = 5 mM, and the association rate constant (k_a) = 100 mM-1s-1.

- a) 400.
- b) 4,000 s-1.
- c) 4,000 mM-1s-1.