CONCEPT: CALCULATING V_{MAX}

V_{max} can be calculated in _____ ways.

1) V_{max} calculated by algebraic ______ of the Michaelis-Menten or Lineweaver-Burk equations.

EXAMPLE: Algebraically rearrange the Michaelis-Menten-equation to solve for V_{max}.

- 2) V_{max} is ______ proportional to both the *product formation* rate constant (k_2) & the $[E]_T$
 - \square Recall: Biochemists measure/plot the initial velocity (V_0) of the **product**-formation step.
 - □ Recall: _____ reaction velocity (V₀) has the best chance at approaching maximum velocity (V_{max}).

Review:

EXAMPLE: Calculate the maximum reaction velocity (V_{max}) of an enzyme if the $K_m = 7$ mM and the initial reaction velocity (V_0) = 86.71 μ M/sec when the [S] = 25 mM.

- a) $2.31 \times 10^2 \text{ M s}^{-1}$.
- b) $4.05 \times 10^{-6} \text{ M s}^{-1}$.
- c) 1.11 x 10⁻⁴ M s⁻¹.
- d) $7.68 \times 10^{-2} \text{ M s}^{-1}$.

CONCEPT: CALCULATING V_{MAX}

PRACTICE: Suppose an enzyme (MW = 5,000 g/mole) has a concentration of 0.05 mg/L. If the k_{cat} is 1 x 10⁴ s⁻¹, what is the theoretical maximum reaction velocity for the enzyme?

- a) $1050 \, \mu M/s$.
- b) $100 \, \mu M/s$.
- c) 150 µM/s.
- d) $105 \mu M/s$.

PRACTICE: For a Michaelis-Menten enzyme, what is the value of V_{max} if at 1/10 K_m, the $V_0 = 1$ µmol/min.

- a) 1.5 µmol/min.
- b) 11 µmol/min.
- c) 19 µmol/min.
- d) 103 μmol/min.
- e) 7 µmol/min.

PRACTICE: Carbonic anhydrase catalyzes the hydration of CO_2 . The K_m of carbonic anhydrase for CO_2 is 12 mM. The initial velocity (V_0) of the enzyme-catalyzed reaction was 4.5 μ mole*mL-1*sec-1 when [CO_2] = 36 mM. Calculate the V_{max} of carbonic anhydrase.

- a) $8.1 \times 10^2 \,\mathrm{M \, s^{-1}}$.
- b) $6 \times 10^{-3} \text{ M s}^{-1}$.
- c) 2.5 x 10⁻⁴ M s⁻¹.
- d) 7.3 x 10-5 M s-1.

PRACTICE: Triose phosphate isomerase catalyzes the conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P) during glycolysis; however, this is a reversible reaction. The K_m of the enzyme for G3P is 1.8×10^{-5} M. When [G3P] = 30μ M, the initial rate of the reaction (V_0) = 82.5μ mole*mL-1*sec-1. Calculate the V_{max} .

- a) 0.493 M s⁻¹.
- b) 1.201 M s⁻¹.
- c) 0.067 M s⁻¹.
- d) 0.132 M s⁻¹.

Dihydroxyacetone-phosphate (DHAP)

O OH OH

Glyceraldehyde-3-phosphate (G3P)