CONCEPT: CALCULATING V_{MAX} V_{max} can be calculated in _____ ways. 1) V_{max} calculated by algebraic ______ of the Michaelis-Menten or Lineweaver-Burk equations. **EXAMPLE:** Algebraically rearrange the Michaelis-Menten-equation to solve for V_{max}. - 2) V_{max} is ______ proportional to both the *product formation* rate constant (k_2) & the $[E]_T$ - \square Recall: Biochemists measure/plot the initial velocity (V_0) of the **product**-formation step. - □ Recall: _____ reaction velocity (V₀) has the best chance at approaching maximum velocity (V_{max}). ## Review: **EXAMPLE:** Calculate the maximum reaction velocity (V_{max}) of an enzyme if the $K_m = 7$ mM and the initial reaction velocity (V_0) = 86.71 μ M/sec when the [S] = 25 mM. - a) $2.31 \times 10^2 \text{ M s}^{-1}$. - b) $4.05 \times 10^{-6} \text{ M s}^{-1}$. - c) 1.11 x 10⁻⁴ M s⁻¹. - d) $7.68 \times 10^{-2} \text{ M s}^{-1}$. ## **CONCEPT:** CALCULATING V_{MAX} **PRACTICE:** Suppose an enzyme (MW = 5,000 g/mole) has a concentration of 0.05 mg/L. If the k_{cat} is 1 x 10⁴ s⁻¹, what is the theoretical maximum reaction velocity for the enzyme? - a) $1050 \, \mu M/s$. - b) $100 \, \mu M/s$. - c) 150 µM/s. - d) $105 \mu M/s$. **PRACTICE:** For a Michaelis-Menten enzyme, what is the value of V_{max} if at 1/10 K_m, the $V_0 = 1$ µmol/min. - a) 1.5 µmol/min. - b) 11 µmol/min. - c) 19 µmol/min. - d) 103 μmol/min. - e) 7 µmol/min. **PRACTICE:** Carbonic anhydrase catalyzes the hydration of CO_2 . The K_m of carbonic anhydrase for CO_2 is 12 mM. The initial velocity (V_0) of the enzyme-catalyzed reaction was 4.5 μ mole*mL-1*sec-1 when [CO_2] = 36 mM. Calculate the V_{max} of carbonic anhydrase. - a) $8.1 \times 10^2 \,\mathrm{M \, s^{-1}}$. - b) $6 \times 10^{-3} \text{ M s}^{-1}$. - c) 2.5 x 10⁻⁴ M s⁻¹. - d) 7.3 x 10-5 M s-1. **PRACTICE:** Triose phosphate isomerase catalyzes the conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P) during glycolysis; however, this is a reversible reaction. The K_m of the enzyme for G3P is 1.8×10^{-5} M. When [G3P] = 30μ M, the initial rate of the reaction (V_0) = 82.5μ mole*mL-1*sec-1. Calculate the V_{max} . - a) 0.493 M s⁻¹. - b) 1.201 M s⁻¹. - c) 0.067 M s⁻¹. - d) 0.132 M s⁻¹. Dihydroxyacetone-phosphate (DHAP) O OH OH Glyceraldehyde-3-phosphate (G3P)