CONCEPT: ISOELECTRIC FOCUSING

- Isoelectric Focusing (IEF): electrophoresis technique separating proteins only based on ______ points (pl).
 Recall: pl is the pH where the net charge of the protein is _____.
 A stable/immobile _____ gradient is established into the gel.
 Proteins alter their _____ as they migrate through different regions of the gel with different pH.
 Proteins continue to migrate until they reach the portion of the gel that has a pH _____ to its pl.
 - □ When the pH = pI of a protein, it has a *neutral* net charge of zero & does _____ migrate in an electric field.

EXAMPLE: Isoelectric focusing (IEF).

PRACTICE: At some point during isoelectric focusing, proteins stop moving through the gel because:

- a) The proteins do not have ionized groups at that pH.
- b) The proteins have a net charge of zero at that pH.
- The proteins have a net positive or net negative charge at that pH.
- d) Their mass is too large to be moved at that position in the gel.

PRACTICE: Electrophoretic separation at pH 6 of a sample mixture with Peptide #1 (MW 100) Peptide #2 (MW 200) and Peptide #3 (MW 400) would result in which of the following? (Note: the pl of each peptide occurs at pH 6).

- a) Peptide #1 would move the farthest.
- c) Peptide #3 would move the farthest.
- b) Peptide #2 would move the farthest.
- d) None of the peptides would move.

PRACTICE: Mark the approximate final position of the following tripeptide on the isoelectric focusing gel: Glu-Met-Asp.

Hint: calculate the isoelectric point of the peptide.

Ionizable Group		pKa
C-terminus	—соон	3.5
Asp	C соо н	3.9
Glu	— H ₂ H ₂ — соон	4.1
N-terminus	——ÑH₃	8.0