CONCEPT: NONCOMPETITIVE INHIBITION •____ncompetitive inhibitors are a specific type of _____ inhibitor that also do ____t compete with the S. • Noncompetitive inhibitors: also bind to allosteric sites on either the _____ enzyme **OR** the _____-complex to lower V₀. \Box Binding of a noncompetitive inhibitor to E or ES-complex ultimately _____ conversion of $S \rightarrow P$. \square Noncompetitive inhibitors bind with the affinity to the *free enzyme* as to the *ES-complex* ($K_I = K'_I$). **EXAMPLE:** Noncompetitive inhibition. Substrate Inhibitor No Reaction No Reaction EI **ESI** Noncompetitive Inhibitor Effects ___ncompetitive inhibitors do ____t affect the K app , but do _____ the V app ____ the V app ____ ax . 1) By Le Chatelier's Principle, if ____ = ___, then the reaction shifts cancel & there is ____ overall reaction shift. 2) S can't outcompete noncompetitive inhibitors, so effects are NOT reversed by _____ [S] & V app is decreased. 3) Since noncompetitive inhibitors decrease V_{\max}^{app} , k_{cat} is also _ 1) Le Chatelier's Principle At saturating [S]: 2 & 3) competitive I α' ncompetitive Inhibition = NO_nK_om_{petitive} = NO change. If **S** CAN'T **compete**, it CAN'T keep same _____ so it's decreased. ESI ### **CONCEPT: NONCOMPETITIVE INHIBITION** ### Noncompetitive Inhibition & Michaelis-Menten-Plots - •Recall: ____ncompetitive inhibitors are just a specific type of *mixed* inhibitor. - •Noncompetitive inhibitors bind to either free enzymes **OR** ES-complexes, so _____ & α' measures its degree of inhibition. - □ A noncompetitive inhibitor is a mixed inhibitor where ____ = ____. - \square Since α = α ' with a noncompetitive inhibitor, the $\mathbf{K}_{\mathbf{m}}^{\mathbf{app}}$ is _____t changed ($\mathbf{K}_{\mathbf{m}}^{\mathbf{app}}$ = $\mathbf{K}_{\mathbf{m}}$). - \square α' always ______ V_{max}^{app} (V_{max}/α') . #### **EXAMPLE:** # Noncompetitive Inhibition & Lineweaver-Burk-Plots - •Slope of the line on a LW-Burk plot (slope = K_m/V_{max}) _____ with more noncompetitive inhibitor. - \Box Recall: noncompetitive inhibitors always decrease the V_{max}^{app} but have no effect on the _____. - □ _____intercept (1/V_{max}) on a LW-Burk-Plot always *increases*, but _____intercept (-1/K_m) stays the _ **Noncompetitive Inhibitor Lineweaver-Burk Equation:** $\frac{1}{V_0} = \frac{\alpha K_m}{V_{max}} \left(\frac{1}{[S]} \right) + \frac{\alpha'}{V_{max}}$ V_{max} + [I] ## **CONCEPT: NONCOMPETITIVE INHIBITION** PRACTICE: Indicate with an "x" which of the kinetic parameters would be altered in the presence of the given inhibitor. | K _m | V _{max} | Both | Neither | Factor | |----------------|------------------|------|---------|--------------------------| | | | | | Competitive Inhibitor | | | | | | Noncompetitive Inhibitor | PRACTICE: What can be determined from the following Lineweaver Burk plot? - a) Data collected in the absence (solid line) & presence (dashed line) of a competitive inhibitor. - b) Data collected in the absence (solid line) & presence (dashed line) of a noncompetitive inhibitor. - c) Data collected in the absence (dashed line) & presence (solid line) of a competitive inhibitor. - d) Data collected in the absence (dashed line) & presence (solid line) of a noncompetitive inhibitor. **PRACTICE:** How would you expect the line on a Lineweaver-Burk plot to change if the enzyme was treated with a noncompetitive inhibitor? - a) The y-intercept would move up (away from the origin). - b) The x-intercept would move left (away from the origin). - c) The y-intercept would move down (toward the origin). - d) The x-intercept would move right (toward the origin). PRACTICE: The following values were determined for alcohol dehydrogenase in the absence & presence of acetaldehyde. What kind of inhibitor is acetaldehyde? - a) Noncompetitive inhibitor. - b) Uncompetitive inhibitor. - c) Mixed inhibitor. - d) Competitive inhibitor. | | Km (mM) | Vmax (µmol/min) | |---------------------------------|---------|-----------------| | In the Absence of Acetaldehyde | 0.1 | 750 | | In the Presence of Acetaldehyde | 0.1 | 500 |