CONCEPT: NONCOMPETITIVE INHIBITION •____ncompetitive inhibitors are a specific type of _____ inhibitor that also do ____t compete with the S. • Noncompetitive inhibitors: also bind to allosteric sites on either the _____ enzyme **OR** the _____-complex to lower V₀. \Box Binding of a noncompetitive inhibitor to E or ES-complex ultimately _____ conversion of $S \rightarrow P$. \square Noncompetitive inhibitors bind with the affinity to the *free enzyme* as to the *ES-complex* ($K_I = K'_I$). **EXAMPLE:** Noncompetitive inhibition. Substrate Inhibitor No Reaction No Reaction EI **ESI** Noncompetitive Inhibitor Effects ___ncompetitive inhibitors do ____t affect the K app , but do _____ the V app ____ the V app ____ ax . 1) By Le Chatelier's Principle, if ____ = ___, then the reaction shifts cancel & there is ____ overall reaction shift. 2) S can't outcompete noncompetitive inhibitors, so effects are NOT reversed by _____ [S] & V app is decreased. 3) Since noncompetitive inhibitors decrease V_{\max}^{app} , k_{cat} is also _ 1) Le Chatelier's Principle At saturating [S]: 2 & 3) competitive I α' ncompetitive Inhibition = NO_nK_om_{petitive} = NO change. If **S** CAN'T **compete**, it CAN'T keep same _____ so it's decreased.

ESI

CONCEPT: NONCOMPETITIVE INHIBITION

Noncompetitive Inhibition & Michaelis-Menten-Plots

- •Recall: ____ncompetitive inhibitors are just a specific type of *mixed* inhibitor.
- •Noncompetitive inhibitors bind to either free enzymes **OR** ES-complexes, so _____ & α' measures its degree of inhibition.
 - □ A noncompetitive inhibitor is a mixed inhibitor where ____ = ____.
 - \square Since α = α ' with a noncompetitive inhibitor, the $\mathbf{K}_{\mathbf{m}}^{\mathbf{app}}$ is _____t changed ($\mathbf{K}_{\mathbf{m}}^{\mathbf{app}}$ = $\mathbf{K}_{\mathbf{m}}$).
 - \square α' always ______ V_{max}^{app} (V_{max}/α') .

EXAMPLE:

Noncompetitive Inhibition & Lineweaver-Burk-Plots

- •Slope of the line on a LW-Burk plot (slope = K_m/V_{max}) _____ with more noncompetitive inhibitor.
 - \Box Recall: noncompetitive inhibitors always decrease the V_{max}^{app} but have no effect on the _____.
 - □ _____intercept (1/V_{max}) on a LW-Burk-Plot always *increases*, but _____intercept (-1/K_m) stays the _

Noncompetitive Inhibitor Lineweaver-Burk Equation: $\frac{1}{V_0} = \frac{\alpha K_m}{V_{max}} \left(\frac{1}{[S]} \right) + \frac{\alpha'}{V_{max}}$

 V_{max}

+ [I]

CONCEPT: NONCOMPETITIVE INHIBITION

PRACTICE: Indicate with an "x" which of the kinetic parameters would be altered in the presence of the given inhibitor.

K _m	V _{max}	Both	Neither	Factor
				Competitive Inhibitor
				Noncompetitive Inhibitor

PRACTICE: What can be determined from the following Lineweaver Burk plot?

- a) Data collected in the absence (solid line) & presence (dashed line) of a competitive inhibitor.
- b) Data collected in the absence (solid line) & presence (dashed line) of a noncompetitive inhibitor.
- c) Data collected in the absence (dashed line) & presence (solid line) of a competitive inhibitor.
- d) Data collected in the absence (dashed line) & presence (solid line) of a noncompetitive inhibitor.

PRACTICE: How would you expect the line on a Lineweaver-Burk plot to change if the enzyme was treated with a noncompetitive inhibitor?

- a) The y-intercept would move up (away from the origin).
- b) The x-intercept would move left (away from the origin).
- c) The y-intercept would move down (toward the origin).
- d) The x-intercept would move right (toward the origin).

PRACTICE: The following values were determined for alcohol dehydrogenase in the absence & presence of acetaldehyde.

What kind of inhibitor is acetaldehyde?

- a) Noncompetitive inhibitor.
- b) Uncompetitive inhibitor.
- c) Mixed inhibitor.
- d) Competitive inhibitor.

	Km (mM)	Vmax (µmol/min)
In the Absence of Acetaldehyde	0.1	750
In the Presence of Acetaldehyde	0.1	500