
CONCEPT: INSULIN

•_____: a 51-amino-acid peptide hormone involved in classic RTK pathways.

□ Signals a "well-____" or "fuel _____" state.

 \Box Initially secreted as a _____ (proinsulin) by pancreatic β -cells in response to a meal.

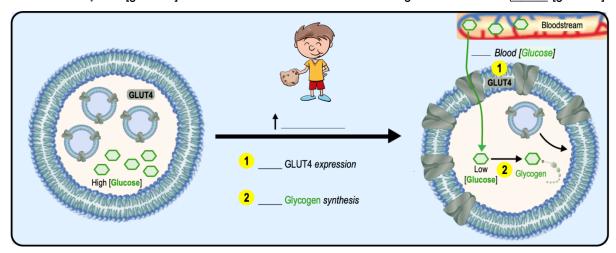
PRACTICE: Proinsulin:

- a) Is synthesized in three parts and then assembled for storage.
- b) Is more active than insulin.
- c) Is synthesized as a single chain, folded and then cleaved into insulin.
- d) Stimulates insulin secretion.

Insulin's 3 Primary Biological Effects

•After eating a meal, insulin can signal many effects, but generates _____ primary biological effects:

1	blood-glucose concentration.
2	cell growth by regulating gene expression.
3	Increases the synthesis of specific

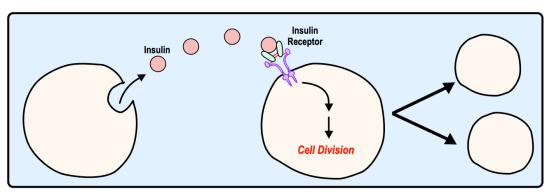

PRACTICE: Which of the following is NOT a biological effect of insulin after eating a large meal?

- a) Increases the concentration of blood glucose.
- b) Regulates gene expression to activate cell growth.
- c) Stimulates the production of certain lipid molecules.
- d) Decreases the concentration of blood glucose.

CONCEPT: INSULIN

1) Insulin Decreases Blood [Glucose]

- •After a high-glucose meal, insulin's primary job is to help _____ [glucose] in blood in the following ways:
 - 1 Insulin ____ glucose transporter (_____) expression, which imports blood glucose into cells.
 - 2 Insulin indirectly affects cytosolic enzyme activity (via signaling) to convert free glucose to ______.
 - □ This ↓ free [glucose] inside cell facilitates diffusion of blood glucose into cells ([glucose] in blood).

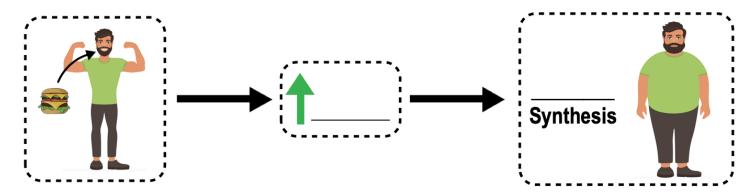

PRACTICE: What is the primary function of the peptide insulin?

- a) To stimulate transport of glucose out of the cell and into the bloodstream.
- b) To stimulate transport of proinsulin out of the pancreas and into the bloodstream.
- c) To stimulate transport of glucose out of the bloodstream and into the cell.
- d) The transport of epinephrine from the bloodstream to the cell receptor.

2) Insulin Stimulates Cell Growth

- •When [insulin] is high, insulin can also act as a ______ factor.
 - □ Growth factor. a biological substance that _____ cellular growth, healing, &/or differentiation.
 - □ Insulin as a growth hormone uses a _____ signaling pathway than when it lowers blood [glucose].

EXAMPLE: Insulin Acts as a Growth Factor to Stimulate Cell Growth.


CONCEPT: INSULIN

PRACTICE: The hormone insulin can function as a(n) ______

- a) Secondary messenger.
- b) Adapter protein.
- c) Effector enzyme.
- d) Growth factor.

3) Insulin Increases Lipid Synthesis

•Insulin has a large effect on _____ synthesis, which we'll discuss more in a later chapter.

PRACTICE: What is the effect of insulin on lipid fatty acid synthesis?

- a) It activates regulatory proteins that inhibit synthesis of fatty acids.
- b) It increases the synthesis of fatty acids resulting in higher amounts of fat storage.
- c) In causes fatty acids degradation by liposomes.
- d) It decreases fat storage by converting fatty acids to energy.
- e) None of the above.

PRACTICE: Which of the following is NOT an effect of insulin?

- a) It increases the rate of fatty-acid synthesis and storage.
- b) It decreases the concentration of blood glucose.
- c) It stimulates cell growth and division.
- d) In stimulates the release of proinsulin from the pancreas.