CONCEPT: ISOELECTRIC POINT OF AMINO ACIDS WITH IONIZABLE R-GROUPS

- •Amino acids with ionizable R-groups have _____ pK_a values, but pI is still an average of only _____ pK_a values.
 - □ Question: So how do you know which pKa values to average?
 - 1) Know the net charge of the protonated & deprotonated forms of ______ R-groups.
 - 2) Order the 3 pKa values from _____ to largest & use the middle pKa as a guide.
 - 3) Determine net _____ of predominate amino acid structures at any pH between adjacent pKa values.
 - 4) Average _____ pK_as: the middle pK_a with the pK_a closest to the pH that gives a neutral net charge.

EXAMPLE: Calculate the isoelectric point of Tyr. $pK_{a1} = 9.1$. $pK_{a2} = 2.2$. $pK_R = 10.1$.

PRACTICE: What is the pl of His?

- a) 7.59
- b) 6.58
- c) 3.91
- d) 5.5

$$pK_{a1} = 9.17$$
 $pK_{a2} = 1.82$ $pK_{R} = 6.0$

PRACTICE: Electrophoresis separates molecules by migration through a gel only if they have a net charge. How do you expect an amino acid to migrate during electrophoresis when the pH = pI?

- a) Migrate from the (-) end to the (+) end. b) Migrate from the (+) end to the (-) end. c) No
 - c) No migration.

CONCEPT: ISOELECTRIC POINT OF AMINO ACIDS WITH IONIZABLE R-GROUPS

PRACTICE: Draw Glu and calculate its isoelectric point. $pK_{a1} = 9.67$. $pK_{a2} = 2.19$. $pK_R = 4.25$.

- a) 7.48
- b) 3.22
- c) 6.96
- d) 5.93

PRACTICE: Calculate Cys's pl.

- a) 2.3
- b) 3.14
- c) 5.05
- d) 6.05

PRACTICE: Calculate the pI of Arg. $pK_{a1} = 9$. $pK_{a2} = 2.2$. $pK_R = 12.5$.

- a) 1.9
- b) 10.75
- c) 3.6
- d) 12.5

PRACTICE: Calculate the pl of Asp.

- a) 1.4
- b) 3
- c) 5.95
- d) 6.85

$$pK_{a1} = 9.8$$
 H_3N
 $pK_{a2} = 2.1$
 $pK_{a2} = 2.1$
 $pK_{a2} = 2.1$
 $pK_{a3} = 2.1$