CONCEPT: POST TRANSLATIONAL MODIFICATION

 Recall: translation is the cellular process of building 	using the encoded messages of		·
●Translational Modifications: protein	alterations that control protein activity		translation.
 There are many types of post-translational modifications (PTM), but some of the mor	e common types inclu	de:
□ Methylation □ Acetylation	□ Ubiquitination	□ Phosphorylatio	n
EXAMPLE: Post-Translational Modifications.			
	√ mRNA		
1. Hydroxylation. HO—	Translation 9	9	
2	8	8. G	Slycosylation.
3. Lipidation.	otein 6	7. Sulfon	ation.
4 H ₃ C — C	S S	6	
5. Disulf	ide bonds.		
Proteolytic Cleavage			
Another type of post-translational-modification is	cleavage.		
	bonds between amino acid residues of proteins.		
□ Requires proteases or, which	are enzymes that cleave p	peptide bonds.	
Protease	+		

PRACTICE: Which of the following would not be a reversible post-translational modification?

Inactive

- a) Phosphorylation.
- b) Preoteolytic processing.
- c) Alkylation.

Inactive

d) Methylation.

CONCEPT: POST TRANSLATIONAL MODIFICATION

PRACTICE: An enzyme's active site has high affinity for a polar charged substrate. How will methylation of the active site affect the reaction rate of the enzyme?

- a) Affinity for the charged substrate will increase thereby increasing reaction rate.
- b) Affinity will remain unchanged, and therefore will be independent of the modification.
- c) Affinity for the substrate will decrease, lowing the reaction rate.

PRACTICE : Histones are proteins that	regulate gene expression by bindi	ng to DNA and controlling which regions are		
exposed to be expressed. Histones bind to DNA at a neutral pH via their positively charged lysine residues, but acetylation				
of histones leads to the dissociation of the DNA-Histone complex. Covalent modification of lysine's ammonium group by				
acetylation results in an overall	charge of the histone b	oinding region.		
a) Positive.	b) Neutral.	c) Negative.		