CONCEPT: UNCOMPETITIVE INHIBITION - •______inhibitors: only bind _____-complex (**NOT** free enzyme) to form an ESI-complex & decrease V₀. - □ _____ competition: Uncompetitive inhibitor's binding-site *only* created when **S** binds **E** to form the ES-complex. - \square Binding of an *uncompetitive inhibitor* to ES-complex _____ conversion of $S \rightarrow P$. **EXAMPLE:** Uncompetitive inhibition. ### **Uncompetitive Inhibitor Effects** - ●Recall: No competition between **S** & *uncompetitive* inhibitors & they *proportionally* ______ both K^{app} & V^{app}_{max} . - 1) By Le Chatelier's Principle, lower [ES] causes k_1 reaction to shift _____, strengthening ES affinity & ____ $\mathbf{K}_{\mathbf{m}}^{\mathbf{app}}$. - 2) Since **S** can't outcompete uncompetitive inhibitors, effects are *NOT reversed* by _____ [**S**], so **V** app max is decreased. - 3) Since uncompetitive inhibitors decrease V_{\max}^{app} , k_{cat} is also ______. ### **CONCEPT: UNCOMPETITIVE INHIBITION** ## **Uncompetitive Inhibition & Michaelis-Menten-Plots** - •Recall: uncompetitive inhibitors *only* bind to ES-complexes, so ____ measures its *degree of inhibition* on the ES-complex. - \square α' of an uncompetitive inhibitor _____ both the K_m^{app} & V_{max}^{app} of an enzyme (K_m/α' and V_{max}/α'). ### **Uncompetitive Inhibition & Lineweaver-Burk-Plots** - ●Recall: Uncompetitive inhibitors *proportionally* ______ both the K app & the V app max of an enzyme. - ●Though K^{app} & V^{app} are decreased, uncompetitive inhibitors do <u>not</u> change the line's _____ (slope = K_m/V_{max}). - ●Both the _____-intercept (1/V_{max}) & the absolute value of the _____-intercept (-1/K_m) are proportionally _____ **EXAMPLE:** Draw the representative line for the enzyme activity if the concentration of uncompetitive inhibitor was doubled. **PRACTICE:** True or false: Increasing [S] in the presence of an uncompetitive inhibitor will lower the inhibition constant (K_I). a) True. b) False. # **CONCEPT: UNCOMPETITIVE INHIBITION** | PRACT | TICE: In the presence of an unco | mpetitive inhibitor that binds $___$ the substrate, the apparent V_{max} | |-------|----------------------------------|--| | | and the apparent K_m | with respect to the V_{max} and K_{m} of the uninhibited enzyme. | | a) | Before, Decreases, Increases. | | | b) | After, Decreases, Decreases. | | | c) | After, Increases, Increases. | | $\mbox{d)} \quad \mbox{Before, Stays the same, Decreases.}$ e) After, Decreases, Stays the same. PRACTICE: What is the effect of an uncompetitive inhibitor on the equilibrium between free enzyme & the ES-complex? - a) A shift to the right due to decreased [ES]. - b) A shift to the left due to decreased [ES]. - c) A shift to the right due to increased [ES]. - d) A shift to the left due to increased [ES].