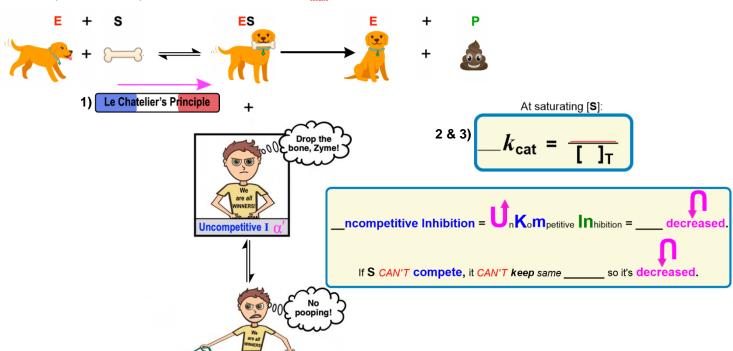
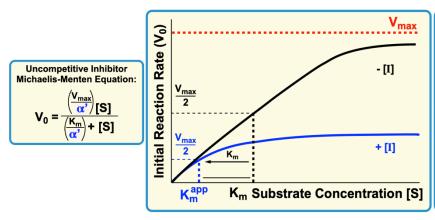
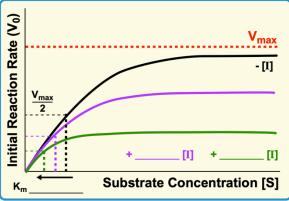

CONCEPT: UNCOMPETITIVE INHIBITION


- •______inhibitors: only bind _____-complex (**NOT** free enzyme) to form an ESI-complex & decrease V₀.
 - □ _____ competition: Uncompetitive inhibitor's binding-site *only* created when **S** binds **E** to form the ES-complex.
 - \square Binding of an *uncompetitive inhibitor* to ES-complex _____ conversion of $S \rightarrow P$.

EXAMPLE: Uncompetitive inhibition.

Uncompetitive Inhibitor Effects

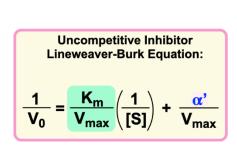

- ●Recall: No competition between **S** & *uncompetitive* inhibitors & they *proportionally* ______ both K^{app} & V^{app}_{max} .
 - 1) By Le Chatelier's Principle, lower [ES] causes k_1 reaction to shift _____, strengthening ES affinity & ____ $\mathbf{K}_{\mathbf{m}}^{\mathbf{app}}$.
 - 2) Since **S** can't outcompete uncompetitive inhibitors, effects are *NOT reversed* by _____ [**S**], so **V** app max is decreased.
 - 3) Since uncompetitive inhibitors decrease V_{\max}^{app} , k_{cat} is also ______.

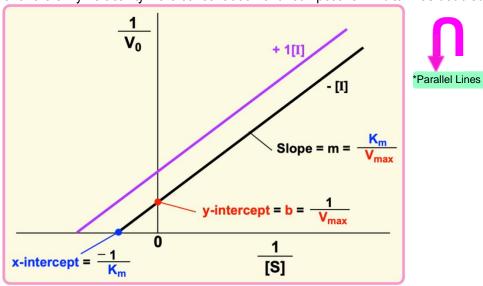


CONCEPT: UNCOMPETITIVE INHIBITION

Uncompetitive Inhibition & Michaelis-Menten-Plots

- •Recall: uncompetitive inhibitors *only* bind to ES-complexes, so ____ measures its *degree of inhibition* on the ES-complex.
 - \square α' of an uncompetitive inhibitor _____ both the K_m^{app} & V_{max}^{app} of an enzyme (K_m/α' and V_{max}/α').





Uncompetitive Inhibition & Lineweaver-Burk-Plots

- ●Recall: Uncompetitive inhibitors *proportionally* ______ both the K app & the V app max of an enzyme.
- ●Though K^{app} & V^{app} are decreased, uncompetitive inhibitors do <u>not</u> change the line's _____ (slope = K_m/V_{max}).
- ●Both the _____-intercept (1/V_{max}) & the absolute value of the _____-intercept (-1/K_m) are proportionally _____

EXAMPLE: Draw the representative line for the enzyme activity if the concentration of uncompetitive inhibitor was doubled.

PRACTICE: True or false: Increasing [S] in the presence of an uncompetitive inhibitor will lower the inhibition constant (K_I).

a) True.
b) False.

CONCEPT: UNCOMPETITIVE INHIBITION

PRACT	TICE: In the presence of an unco	mpetitive inhibitor that binds $___$ the substrate, the apparent V_{max}
	and the apparent K_m	with respect to the V_{max} and K_{m} of the uninhibited enzyme.
a)	Before, Decreases, Increases.	
b)	After, Decreases, Decreases.	
c)	After, Increases, Increases.	

 $\mbox{d)} \quad \mbox{Before, Stays the same, Decreases.}$

e) After, Decreases, Stays the same.

PRACTICE: What is the effect of an uncompetitive inhibitor on the equilibrium between free enzyme & the ES-complex?

- a) A shift to the right due to decreased [ES].
- b) A shift to the left due to decreased [ES].
- c) A shift to the right due to increased [ES].
- d) A shift to the left due to increased [ES].