CONCEPT: BETA TURNS

 & loops: non-repetitive secondary structures causing the peptide back 	kbone to directions.
$\hfill\Box$ Usually found on the $\emph{surface}$ of proteins with residues &	allow for a folded, compact shape.
● <u>Loop</u> : links of amino acids causing changes in backbone direction _	fixed, internal hydrogen bonds
● <u>β-Turns</u> (or Reverse turns): loops (≤ 4 amino acid residues) causing _	changes in backbone direction.
□ Stabilized by fixed, internal hydrogen bonds.	
EXAMPLE: Identify all loops & β-turns in the figures below.	

PRACTICE: Which of the following options contains a true statement about protein turns & loops?

- a) Loops & turns can interact with other proteins & the environment.
- b) Loops are short links causing abrupt changes in direction & extend only from β strands.
- c) Loops and turns usually contain hydrophilic residues located on the interior of proteins.
- d) Loops exposed to an agueous environment are usually composed of hydrophobic amino acids.

Type I & II β-Turns

 			
•Two common types of β-turns: 1) <i>Typ</i>	pe β-turn &	2) Type β-turn.	
●Both types produce abrupt	in direction, contain	amino acid residues, & are stabilized by	_ bonding
□ Type I β-turns: <i>more</i> commo	n & usually contain a	amino acid residue at position #2 of the t	urn.
□ Type II β-turns: contain a	amino acid re	sidue at position #3 of the turn.	
EXAMPLE:	R 3 4 R Ca Pro R 1	3 d 4 d Gly	

PRACTICE: In the peptide below, circle the *individual* amino acid residues indicating the most likely positions for β-turns:

Type I β turn

Type II β turn

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Ile-Ala-His-Thr-Tyr-Gly-Pro-Phe-Glu-Ala-Ala-Met-Cys-Lys-Trp-Glu-Ala-Gln-Pro-Asp-Gly-Met-Glu-Cys-Ala-Phe-His-Arg

CONCEPT: BETA TURNS

PRACTICE: Which of the following statements is true regarding β -turns?

- a) Only Type I β-turns are stabilized by hydrogen bonds, not Type II β-turns.
- b) Type II β-turns have a Pro residue at position #2 of the turn.
- c) Type I β-turns have a Gly residue at position #4 of the turn.
- d) Type II β -turns have a Gly residue at position #3 of the turn.

Beta Turn Bond Angles

- ●Bond angles for loops & turns are found in _____ regions of a Ramachandran plot.
 - \Box Type II β-turns: some ϕ and ψ angles lie _____ expected permissible angles.
- _____ can adopt a wide range of φ and ψ angles because of its small R-group that avoids steric hindrance.
 - □ Glycine is often a residue found in type ____ β-turns.

EXAMPLE:

PRACTICE: If the phi & psi angles of loop regions are plotted, where do they tend to fall on the Ramachandran plot below?

- a) The area labeled in green.
- b) The area labeled in blue.
- c) The area labeled in grey.
- d) All the above.

PRACTICE: Which of the following statements is correct?

- a) Loops and turns are usually found tucked away on the interior of folded proteins.
- b) An α -helix peptide backbone located in the interior of a protein will H-bond to R-groups of other residues.
- c) In extended fibrous proteins that are elongated, we would expect to find numerous β-turns & loops.
- d) Tightly compact spherical/globular proteins tend to have more β-turns than elongated fibrous proteins.
- e) A membrane-embedded α -helix is likely rich in Asp residues.