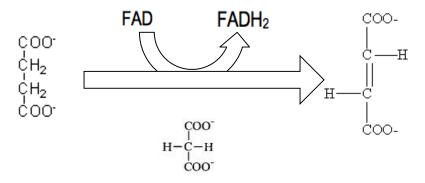

CONCEPT: CITRIC ACID CYCLE


- 4. α-Ketoglutarate dehydrogenase complex (ΔG° = -33.5 kJ/mol) α-ketoglutarate \rightarrow succinyl-CoA
 - □ Releases CO₂, adds CoA, and generates NADH
 - □ Just like pyruvate dehydrogenase, it uses cofactors FAD, lipoate, and TPP; it uses CoA and NAD+ as substrates

- 5. Succinyl-CoA synthetase (ΔG° = -3 kJ/mol) succinyl-CoA \rightarrow succinate
 - □ Thioester bond is broken, and GTP is formed from GDP and P_i via substrate-level phosphorylation
 - Can form ATP from GTP via nucleoside diphosphate kinase reaction (ΔG° = 0 kJ/mol)
 - GTP is used for protein synthesis; mitochondria have their own DNA, therefore need some GTP

- 6. Succinate dehydrogenase ($\Delta G^{"}$ = 0 kJ/mol) succinate \rightarrow fumarate
 - □ Converts –ane to –ene (*trans* form) and produces FADH₂, actually part of complex II in electron transport chain
 - □ Malonate is competitive inhibitor of this enzyme because it has similar chemical structure to succinate
 - $\hfill\Box$ Succinate is symmetrical, so it's orientation in the active site will be random
 - Every turn of cycle, only 1/2 the labeled carbons come out due to randomization, next turn 1/4, then 1/8

