


CONCEPT: PHOTOPHOSPHORYLATION

- Photosystem II reaction center contains chlorophyll P680, provides electrons for noncyclic electron flow
 - □ Splits water to replace lost electrons, water splitting uses 5 redox states of Mn
- Cyt-b₆f contains heme, Fe-S, and ß-carotene, proton pump that receives electrons from plastoquinone
 - □ Plastoquinone pulls H+ out of stroma to pump into the lumen
 - \Box Cyt-b₆f electron flow: plastoquinone \rightarrow cyt b₆ \rightarrow cyt f \rightarrow plastocyanin (Cu)
- Photosystem I reaction center contains chlorophyll P700, provides electrons for noncyclic and cyclic electron flow
 - □ Electrons ejected from reaction center are picked up by ferrodoxin, and can go to cyt-b₆f or to NADP+ reductase

Noncyclic electron flow – PS II → plastoquinone → cyt b₆f → plastocyanin → PS I → ferrodoxin → NADP+ reductase

• Photophosphorylation – sunlight provides the energy to generate a proton motive force that powers ATP synthase