Casually refers to both the processes of ______ & ____ □ *Transcription*: builds using as the coding template. □ Translation: builds _____ using the encoded messages of ____ •Central dogma of molecular biology *directly* refers to the ______ flow of biochemical info from *DNA* to *protein*. _-transcribed into DNA, but transfer of *nucleic acid* info to *protein* is *irreversible*. DNA is replicated & RNA is _____ **EXAMPLE:** -transcription **Transcription** • Transcription uses an enzyme called _____ polymerase, which produces a messenger RNA (or mRNA). □ RNA molecules built from the ____ to the ____ end by aligning free RNA nucleotides on a <u>DNA template</u>. □ RNA molecules have same sequence as the _____ DNA strand (except replacing T's with U's). **RNA** Polymerase **EXAMPLE: RNA Polymerase** Unwinding of DNA Rewinding of DNA DNA 3, Template Strand What's the template strand sequence? Template RNA nucleotides being added to the 3' end of the RNA mRNA 5, mRNA Transcript Free RNA nucleotides RNA RNA-DNA hybrid region What's the RNA sequence? **Translation** Translation uses _ & specialized RNA called _____ RNA (or *tRNA*). □ Ribosomes read the mRNA strand in 3-nucleotide "chunks" called _____ (interpreted with a *genetic code*). □ tRNAs pair with _____ & contain ____-codons that are *complementary* to the *mRNA codons*. **EXAMPLE:** Use the genetic code to fill-in the blanks: **Second Letter of Codon** Ribosome movement C Large Ribosomal UUU }Phe UUC }Leu UUG }Leu Subunit Letter of Codon CUU CUC CUA CUG CCU CCC CCA CCG Letter of Anticodon-Genetic Code ACU ACC ACA ACG 5' mRNA ... AUGUGGUUC AUC Codon-Small Ribosomal First Subunit GCU GCC GCA GCG GGU GGC GGA GGG GAU Asp G Transcription vs. Translation •Let's compare/contrast transcription & translation: **Transcription Translation Product Formed** RNA Molecule Yes Macromolecule Change? Nucleic acid → Nucleic Acid Nucleic acid → Protein Major Enzyme/Structure **RNA** Polymerase Location Cytoplasm 5' to 3' Direction of Synthesis **CONCEPT:** CENTRAL DOGMA ## **CONCEPT:** CENTRAL DOGMA **PRACTICE:** What is the central dogma of molecular biology directly referring to? - a) Unidirectional Translation - b) Multidirectional Translation - c) Unidirectional Transcription - d) Multidirectional Transcription & Translation **PRACTICE:** Consider a DNA template strand of the following sequence: 5'-A C T G C C A G G A A T-3'. A) What is the sequence of the corresponding DNA coding strand? Include directionality. DNA Template Strand: 5'-A C T G C C A G G A A T-3'. **DNA Coding Strand:** B) What is the sequence of the corresponding mRNA strand? Include directionality. mRNA Strand: **PRACTICE:** Consider a DNA coding strand with the following sequence: 3'-C T T C A T A G C T C G-5'. Use the genetic code to determine the corresponding amino acid sequence of the translated protein. | | U | С | Α | G | | |---|---------------------------------|--------------------------|-------------------------------------|--------------------------------|------| | U | UUU } Phe
UUA } Leu
UUG } | UCU
UCC
UCA
UCG | UAU Tyr
UAC Stop
UAG Stop | UGU Cys
UGC Stop
UGG Trp | UCAG | | С | CUU
CUC
CUA
CUG | CCU
CCC
CCA
CCG | CAU His
CAC GIn
CAG GIn | CGU
CGC
CGA
CGG | JUAG | | Α | AUU
AUC
AUA
AUG Met | ACU
ACC
ACA
ACG | AAU } Asn
AAC } Lys
AAG } Lys | AGU Ser
AGC AGA Arg | UCAG | | G | GUU
GUC
GUA
GUG | GCU
GCC
GCA
GCG | GAU Asp
GAA GAG GAG | GGU
GGC
GGA
GGG | UCAG | DNA Coding Strand: 3'-C T T C A T A G C T C G-5' mRNA Strand: Protein Sequence: