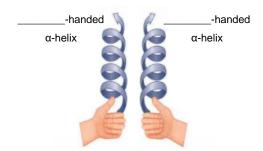
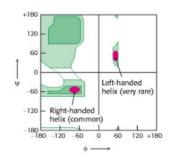
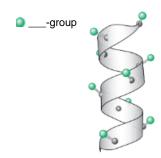

CONCEPT: ALPHA HELIX

(α) helix: a secondary structure where the protein _____ coils & has a periodic, spiral-like conformation.
Stabilized by _____ -bond formation in the backbone between distant amino acids on the same chain.
Backbone hydrogen bonds are nearly _____ to the axis of the alpha helix.
α-Helix backbone can be depicted as a ribbon or _____.
EXAMPLE: α-Helix Depictions.

PRACTICE: Which of the following is true regarding the α -helices in the protein bacteriorhodopsin?


- a) Its α -helices involve multiple polypeptide chains to stabilize the coiled structures.
- b) Their spiral-like structure is stabilized primarily by backbone hydrogen bonds.
- c) Its α-helices are commonly depicted as cones pointing towards the c-terminal end.
- d) Along with its β -sheets, its α -helices define its tertiary level of protein structure.
- e) a & b




Alpha Helix Screw Sense

- Screw sense: Right-handed (clockwise) or left-handed (______-clockwise) twist of the alpha helix spiral.
 - □ Right-handed α-helix is much _____ stable and common than the left-handed helix, which is rare.
- •R-groups of amino acids in an α-helix point outward, away from the helix to steric hindrance.

EXAMPLE: a-Helix Screw Sense.

PRACTICE: Which of the following statements about α -helices is false?

- a) Alpha helices of the Ribonuclease A enzyme are stabilized by hydrogen bonding of the peptide backbone.
- b) Hemoglobin proteins predominantly contain left-handed α-helices.
- c) The R groups of amino acids residues in an α-helix extend radially outward (away from helix center).
- d) α -helix hydrogen bonds of the enzyme citrate synthase are roughly parallel to the axis of the α -helix.