
CONCEPT: SECONDARY ACTIVE MEMBRANE TRANSPORT

Recall	:,	Active Transport: directly driven by an electrochemical ion gradient.	
	\Box HOWEVER, its <i>indirectly</i> driven by p rimary a ctive t ransport (since electrochemical gradients are built by PAT).		
	□ Co-transports ions	their electrochemical gradient & other molecules	their gradient

EXAMPLE: Secondary Active Transport.

EXAMPLE: The sodium–potassium pump is an example of a system that uses primary active transport to set up conditions that can ultimately allow for secondary active transport. All of the following are true except:

- a) The Na+-K+ pump is an antiporter fueled by the hydrolysis of ATP.
- b) Secondary active transport of glucose into cells moves glucose against its concentration gradient.
- c) The Na⁺–K⁺ pump exports Na⁺ ions to the outside of the cell, establishing a concentration gradient for Na⁺.
- d) K⁺ and Na⁺ both diffuse into the cell along their concentration gradients to drive the transport of glucose.
- e) Secondary active transport of glucose into cells is indirectly driven by ATP hydrolysis.

PRACTICE: Which of the following is a way in which primary and secondary active transport may work together?

- a) Primary active transport can be used to create a concentration gradient of sodium such that sodium and glucose can move into the cell together via antiport mechanism.
- b) Primary active transport is used to create ATP necessary to drive secondary active transport.
- c) Primary active transport can be used to create a concentration gradient of sodium such that sodium and glucose can move into the cell together via secondary active symport.
- d) Primary and secondary active transport always oppose each other so they never work together.