CONCEPT: ALLOSTERIC ENZYME CONFORMATIONS

- Protein _____: alternative 3-dimensional *states* that a protein can achieve.
 - □ Recall: proteins are not completely rigid structures; protein structures can be induced to changes.
 - □ Different protein *conformations* can have different abilities and/or _____.

T State & R State

- Allosteric enzymes can exist in one of two states: 1) ____ State (Tense State) 2) ____ State (Relaxed State)
 - □ T state: catalytically ______ & has a _____ affinity for substrates (binds substrates inefficiently).
 - □ R state: catalytically _____ & has a ____ affinity for substrates (binds substrates efficiently).

EXAMPLE:

Allosteric Constant (L₀)

- •_____ Constant (L₀): _____ of T States over *free* R States (T/R) when *no substrate* is present.
 - ☐ T State is more _____ than free R State, so at low [S], equilibrium favors ____ State.

Loren is Tight-roping over a Relaxed Crowd.

CONCEPT: ALLOSTERIC ENZYME CONFORMATIONS

PRACTICE: Which of the following is true about allosteric enzyme conformational states?

- a) The T state is more stable than the R state of the enzyme when no substrate is present.
- b) Rearrangement of the protein's secondary structure dictates T vs. R states.
- c) The R state of the enzyme has a higher affinity for substrate molecules than the T state.
- d) When a substrate is released from the R state, the enzyme remains in that state indefinitely.
- e) All of the above are correct.
- f) Only A and D are correct.
- g) Only A and C are correct.

T/R Conformations Allow for Cooperative Kinetics

- Sigmoidal kinetics ("S"-shaped curve) displayed by allosteric enzymes suggests that **S** binding is _______.
 - □ Positive Cooperativity: binding of one **S** molecule makes it ______ for other **S** molecules to bind enzymes.
 - □ Question: How does cooperative **S**-binding work?
- Recall: at low [S], equilibrium favors ____ State; HOWEVER, increasing [S] disrupts this equilibrium.
- •S binding to free R state produces **S**-bound-R-state, but consequently _____ [free R state].
 - □ By Le Chatelier's Principle, lowering [free R state] causes reaction to shift towards the free _____ state.

CONCEPT: ALLOSTERIC ENZYME CONFORMATIONS

L₀ Dictates Curve in Kinetics Plots

- •The allosteric constant (_____), dictates the extent of an allosteric enzyme's sigmoidal curve.
 - \Box The *greater* the L₀, the _____ sigmoidal the curve will be in a kinetics plot (V₀ vs [S]).
 - □ The smaller the L₀, the _____ sigmoidal and the more the curve resembles Michaelis-Menten kinetics.

•	models	explain	the sia	moidal	kinetics	of a	allosteric	enzv	mes:
			0					- ,	

- 1) _____ (or _____) Model. 2) _____ (or _____) Model.
- □ In *both* models, allosteric enzyme reaction activity can be affected by allosteric _____.

PRACTICE: An allosteric enzyme that follows the concerted model mechanism has a L_0 = 10,000 in the absence of substrate. A mutation in this enzyme caused the L_0 to now be 1/10,000 (reciprocal to its original value). What affect does this mutation have on the reaction rate of the enzymatic reaction?

- a) The enzyme will retain the T state and the reaction will not occur.
- b) Reaction rate remains independent of the substrate concentration.
- c) The association constant (K_a) for formation of the enzyme-substrate complex will not change with the mutation.
- d) Kinetics will appear to be similar to Michaelis-Menten kinetics, since the enzyme is nearly always in its R state.