CONCEPT: ALLOSTERIC ENZYME CONFORMATIONS - Protein _____: alternative 3-dimensional *states* that a protein can achieve. - □ Recall: proteins are not completely rigid structures; protein structures can be induced to changes. - □ Different protein *conformations* can have different abilities and/or _____. ### T State & R State - Allosteric enzymes can exist in one of two states: 1) ____ State (Tense State) 2) ____ State (Relaxed State) - □ T state: catalytically ______ & has a _____ affinity for substrates (binds substrates inefficiently). - □ R state: catalytically _____ & has a ____ affinity for substrates (binds substrates efficiently). #### **EXAMPLE:** ### Allosteric Constant (L₀) - •_____ Constant (L₀): _____ of T States over *free* R States (T/R) when *no substrate* is present. - ☐ T State is more _____ than free R State, so at low [S], equilibrium favors ____ State. Loren is Tight-roping over a Relaxed Crowd. ### **CONCEPT: ALLOSTERIC ENZYME CONFORMATIONS** **PRACTICE:** Which of the following is true about allosteric enzyme conformational states? - a) The T state is more stable than the R state of the enzyme when no substrate is present. - b) Rearrangement of the protein's secondary structure dictates T vs. R states. - c) The R state of the enzyme has a higher affinity for substrate molecules than the T state. - d) When a substrate is released from the R state, the enzyme remains in that state indefinitely. - e) All of the above are correct. - f) Only A and D are correct. - g) Only A and C are correct. # T/R Conformations Allow for Cooperative Kinetics - Sigmoidal kinetics ("S"-shaped curve) displayed by allosteric enzymes suggests that **S** binding is _______. - □ Positive Cooperativity: binding of one **S** molecule makes it ______ for other **S** molecules to bind enzymes. - □ Question: How does cooperative **S**-binding work? - Recall: at low [S], equilibrium favors ____ State; HOWEVER, increasing [S] disrupts this equilibrium. - •S binding to free R state produces **S**-bound-R-state, but consequently _____ [free R state]. - □ By Le Chatelier's Principle, lowering [free R state] causes reaction to shift towards the free _____ state. ### **CONCEPT: ALLOSTERIC ENZYME CONFORMATIONS** # **L₀ Dictates Curve in Kinetics Plots** - •The allosteric constant (_____), dictates the extent of an allosteric enzyme's sigmoidal curve. - \Box The *greater* the L₀, the _____ sigmoidal the curve will be in a kinetics plot (V₀ vs [S]). - □ The smaller the L₀, the _____ sigmoidal and the more the curve resembles Michaelis-Menten kinetics. | • | models | explain | the sia | moidal | kinetics | of a | allosteric | enzv | mes: | |---|--------|---------|---------|--------|----------|------|------------|------|------| | | | | 0 | | | | | - , | | - 1) _____ (or _____) Model. 2) _____ (or _____) Model. - □ In *both* models, allosteric enzyme reaction activity can be affected by allosteric _____. **PRACTICE:** An allosteric enzyme that follows the concerted model mechanism has a L_0 = 10,000 in the absence of substrate. A mutation in this enzyme caused the L_0 to now be 1/10,000 (reciprocal to its original value). What affect does this mutation have on the reaction rate of the enzymatic reaction? - a) The enzyme will retain the T state and the reaction will not occur. - b) Reaction rate remains independent of the substrate concentration. - c) The association constant (K_a) for formation of the enzyme-substrate complex will not change with the mutation. - d) Kinetics will appear to be similar to Michaelis-Menten kinetics, since the enzyme is nearly always in its R state.