CONCEPT: INHIBITION CONSTANT

- Recall: every reaction has a _____ constant (k) indicating reaction rate efficiency/probability under set conditions.
 - \Box The *higher* the k, the ______ likely the reaction is _____.
- •Reactions that form & breakdown the _____ & ESI complexes also have rate constants:
 - \square Rate constant for Inhibitor-complex /association = k_{EI} or k_{ESI}
 - □ Rate constant for Inhibitor-complex *breakdown/*

Inhibition Constant of Free Enzyme (E)

- -state conditions apply to both the ES & complexes (rate of formation of EI = rate of breakdown of EI).
 - \Box Just like we derive the constant from steady-state conditions, we also derive the *inhibition constant* (**K**_I).
- Inhibition constant (**K**_I): the dissociation constant for -enzyme-inhibitor-complex (EI).
 - \square Similar to how $K_m = [S]$ that allows $V_0 = \frac{1}{2}V_{max}$, $K_I = [$] that allows _____ maximum-inhibition.
 - □ Similar to how K_m measures enzyme-substrate affinity, K_I measures enzyme-_____ affinity.
 - \Box The the **K**_I, the the binding affinity an enzyme has for that inhibitor.

EI + S No Reaction

$$K_{m} = \frac{\text{ES dissociation}}{\text{ES association}} = \frac{k_{-1} + k_{2}}{k_{1}} = \frac{\text{[E][S]}}{\text{[ES]}}$$

New:

$$K_{I} = \frac{E_{I} \text{ dissociation}}{E_{I} \text{ association}} = \frac{I}{I} = \frac{I}{I}$$

EXAMPLE: A) Consider the data in the chart below. Which enzyme has the strongest binding affinity for its *substrate*?

- a) Enzyme A.
- b) Enzyme B.
- c) Enzyme C.
- B) Which enzyme has the strongest binding affinity for its *inhibitor*?
 - a) Enzyme A.
- b) Enzyme B. c) Enzyme C.

Enzyme	K _m (M)	K _I (M)	
Enzyme A	0.031	7.2 x 10 ⁻⁶	
Enzyme B	0.025	8.7 x 10 ⁻⁵	
Enzyme C	0.015	1.4 x 10 ⁻³	

CONCEPT: INHIBITION CONSTANT

Inhibition Constant of ES-Complex

- Inhibition constant (K'₁): the dissociation constant for ___nzyme-__ubstrate-__nhibitor-complex (____).
 - □ **K'**_I measures _____-complex affinity for ______ to form ESI.

$$K'_{I} = \frac{\text{ESI dissociation}}{\text{ESI association}} = \frac{k_{\text{-ESI}}}{k_{\text{ESI}}} = \frac{[][]]}{[]}$$

PRACTICE: Use the data in the chart below to determine the answer to the following:

- A) Rank the enzymes in order of their binding affinity to their substrate (strongest affinity \rightarrow weakest affinity).

- a) $A \rightarrow B \rightarrow C$. b) $C \rightarrow A \rightarrow B$. c) $C \rightarrow B \rightarrow A$. d) $B \rightarrow A \rightarrow C$.

Enzyme	k _{cat} (s ⁻¹)	K _m (M)	$\frac{k_{\text{cat}}}{K_{\text{m}}}$ (M ⁻¹ s ⁻¹)	K _I (M)
Enzyme A	0.06	0.031	1.94	7.2 x 10 ⁻⁶
Enzyme B	2.8	0.025	112	8.7 x 10 ⁻⁵
Enzyme C	0.14	0.015	9.33	1.4 x 10 ⁻³

- B) Rank the enzymes in order of their binding affinity to the *inhibitor* (strongest affinity \rightarrow weakest affinity).
 - a) $A \rightarrow B \rightarrow C$.
- b) $B \rightarrow C \rightarrow A$. c) $C \rightarrow B \rightarrow A$.
- d) $B \rightarrow A \rightarrow C$.
- C) Which enzyme would you expect the inhibitor to affect the most? Why?
 - a) Enzyme A.
- b) Enzyme B.
- c) Enzyme C.

PRACTICE: Calculate the Michaelis constant (K_m) and the inhibition constant (K_I) given the following information:

- [E] = 20 mM.
- [S] = 15 mM. [ES] = 5 mM.
- [I] = 8 mM.
- [EI] = 2 mM.

- a) $K_m = 7 \text{ mM}$; $K_I = 14 \text{ mM}$.
- d) $K_m = 60 \text{ mM}$; $K_I = 80 \text{ mM}$.
- b) $K_m = 10 \text{ mM}$; $K_I = 20 \text{ mM}$.
- e) $K_m = 60 \text{ mM}$; $K_I = 20 \text{ mM}$.
- c) $K_m = 20 \text{ mM}$; $K_I = 80 \text{ mM}$.