CONCEPT: INHIBITION CONSTANT - Recall: every reaction has a _____ constant (k) indicating reaction rate efficiency/probability under set conditions. - \Box The *higher* the k, the ______ likely the reaction is _____. - •Reactions that form & breakdown the _____ & ESI complexes also have rate constants: - \square Rate constant for Inhibitor-complex /association = k_{EI} or k_{ESI} - □ Rate constant for Inhibitor-complex *breakdown/* ## Inhibition Constant of Free Enzyme (E) - -state conditions apply to both the ES & complexes (rate of formation of EI = rate of breakdown of EI). - \Box Just like we derive the constant from steady-state conditions, we also derive the *inhibition constant* (**K**_I). - Inhibition constant (**K**_I): the dissociation constant for -enzyme-inhibitor-complex (EI). - \square Similar to how $K_m = [S]$ that allows $V_0 = \frac{1}{2}V_{max}$, $K_I = [$] that allows _____ maximum-inhibition. - □ Similar to how K_m measures enzyme-substrate affinity, K_I measures enzyme-_____ affinity. - \Box The the **K**_I, the the binding affinity an enzyme has for that inhibitor. EI + S No Reaction $$K_{m} = \frac{\text{ES dissociation}}{\text{ES association}} = \frac{k_{-1} + k_{2}}{k_{1}} = \frac{\text{[E][S]}}{\text{[ES]}}$$ New: $$K_{I} = \frac{E_{I} \text{ dissociation}}{E_{I} \text{ association}} = \frac{I}{I} = \frac{I}{I}$$ **EXAMPLE:** A) Consider the data in the chart below. Which enzyme has the strongest binding affinity for its *substrate*? - a) Enzyme A. - b) Enzyme B. - c) Enzyme C. - B) Which enzyme has the strongest binding affinity for its *inhibitor*? - a) Enzyme A. - b) Enzyme B. c) Enzyme C. | Enzyme | K _m (M) | K _I (M) | | |----------|--------------------|------------------------|--| | Enzyme A | 0.031 | 7.2 x 10 ⁻⁶ | | | Enzyme B | 0.025 | 8.7 x 10 ⁻⁵ | | | Enzyme C | 0.015 | 1.4 x 10 ⁻³ | | ## **CONCEPT: INHIBITION CONSTANT** ## **Inhibition Constant of ES-Complex** - Inhibition constant (K'₁): the dissociation constant for ___nzyme-__ubstrate-__nhibitor-complex (____). - □ **K'**_I measures _____-complex affinity for ______ to form ESI. $$K'_{I} = \frac{\text{ESI dissociation}}{\text{ESI association}} = \frac{k_{\text{-ESI}}}{k_{\text{ESI}}} = \frac{[][]]}{[]}$$ PRACTICE: Use the data in the chart below to determine the answer to the following: - A) Rank the enzymes in order of their binding affinity to their substrate (strongest affinity \rightarrow weakest affinity). - a) $A \rightarrow B \rightarrow C$. b) $C \rightarrow A \rightarrow B$. c) $C \rightarrow B \rightarrow A$. d) $B \rightarrow A \rightarrow C$. | Enzyme | k _{cat} (s ⁻¹) | K _m (M) | $\frac{k_{\text{cat}}}{K_{\text{m}}}$ (M ⁻¹ s ⁻¹) | K _I (M) | |----------|-------------------------------------|--------------------|--|------------------------| | Enzyme A | 0.06 | 0.031 | 1.94 | 7.2 x 10 ⁻⁶ | | Enzyme B | 2.8 | 0.025 | 112 | 8.7 x 10 ⁻⁵ | | Enzyme C | 0.14 | 0.015 | 9.33 | 1.4 x 10 ⁻³ | - B) Rank the enzymes in order of their binding affinity to the *inhibitor* (strongest affinity \rightarrow weakest affinity). - a) $A \rightarrow B \rightarrow C$. - b) $B \rightarrow C \rightarrow A$. c) $C \rightarrow B \rightarrow A$. - d) $B \rightarrow A \rightarrow C$. - C) Which enzyme would you expect the inhibitor to affect the most? Why? - a) Enzyme A. - b) Enzyme B. - c) Enzyme C. **PRACTICE:** Calculate the Michaelis constant (K_m) and the inhibition constant (K_I) given the following information: - [E] = 20 mM. - [S] = 15 mM. [ES] = 5 mM. - [I] = 8 mM. - [EI] = 2 mM. - a) $K_m = 7 \text{ mM}$; $K_I = 14 \text{ mM}$. - d) $K_m = 60 \text{ mM}$; $K_I = 80 \text{ mM}$. - b) $K_m = 10 \text{ mM}$; $K_I = 20 \text{ mM}$. - e) $K_m = 60 \text{ mM}$; $K_I = 20 \text{ mM}$. - c) $K_m = 20 \text{ mM}$; $K_I = 80 \text{ mM}$.