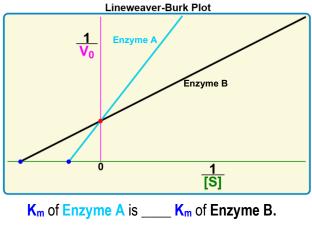
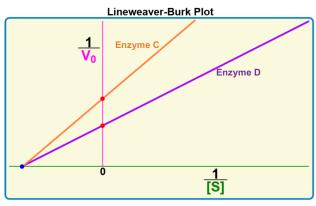

CONCEPT: SHIFTING LINEWEAVER-BURK PLOTS

- •Recall: the Lineweaver-Burk equation resembles the equation of a line: y = mX + b $\frac{1}{V_0} = \frac{K_m}{V_{max}} (\frac{1}{[S]}) + \frac{1}{V_{max}}$
 - □ Slope (m): when m = 0, the line is _____ and increasing the slope (m) makes the line ___
 - □ y-intercept (b): Increasing b will _____ the position where the line intersects the y-axis.
- ●The slope of a line on a Lineweaver-Burk Plot (Vmax) cannot be _____ or have a _____ value.

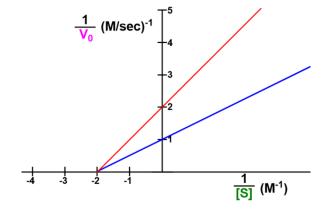


Visualizing Increases/Decreases to K_m & V_{max}


- ullet Because x & y-axis in Lineweaver-Burk plots are _____ (1/[S] and 1/V₀), the [S] and V₀ increase towards zero.
 - □ Note: y-intercept (b = $\frac{1}{V_{max}}$) occurs graphically at _____(∞) [S].

EXAMPLE: Indicate which enzyme in each graph below has a greater $K_m \& V_{max}$.

V_{max} of Enzyme A is _____ V_{max} of Enzyme B.


 K_m of Enzyme C is ____ K_m of Enzyme D.

V_{max} of Enzyme C is _____ V_{max} of Enzyme D.

CONCEPT: SHIFTING LINEWEAVER-BURK PLOTS

PRACTICE: Use the plot to the right. The K_m of both enzymes for their substrate is:

- a) 4 M
- b) 2 M
- c) 1 M
- d) 0.5 M

500 μM

Enzyme

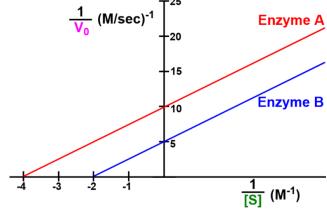
2

PRACTICE: Suppose a company develops two enzymes that degrade highly toxic compounds to non-toxic compounds.

Your task is to degrade the greatest amount of toxic compound in the shortest amount of time.

A) Which enzyme is better to use when [S] = 0.167 mM? _____

K_m V_{max}
167 μΜ 66.7 μΜ/sec


 $100 \mu M/sec$

B) Which enzyme is better to use at saturating [S]?

1 V ₀ (mM/sec) ⁻¹ 35-	[Enzyr	ne 2	
30-	-				/
25-	-			Enz	yme 1
20-	-				
15.					
10-					
5-	-				
	<u> </u>	++	<u> </u>	<u> </u>	+
-6 -5 -4 -3 -2 -1 0) 1	2 3	4	5	6
		7	<u> [S]</u> (mM ⁻¹)	

PRACTICE: Considering the Lineweaver-Burk plot below, which of the following enzymes would be better to use (converts more substrate to product) when the [S] = 0.001 M?

- a) Enzyme A.
- b) Enzyme B.

