## **CONCEPT: CHARGED AMINO ACIDS**

- Charged amino acids: amino acids with R-groups that are electrically \_\_\_\_\_\_ at physiological pH.
  - □ \_\_\_\_ groups of charged amino acids:
- 1) Negatively charged (Acidic)
- 2) Positively charged (Basic)



# **Negatively Charged/Acidic Amino Acids**

- Acidic amino acids: contain acidic R-groups that donate H+, resulting in a \_\_\_\_\_ charge.
  - □ Includes Asp & Glu.
- Presence of \_\_\_\_\_ acids in the R-groups render these amino acids \_\_\_\_\_.

### **EXAMPLE:**

## **Negatively Charged/Acidic Amino Acids**



### Positively Charged/Basic Amino Acids

- Basic amino acids: contain basic R-groups that accept H+, resulting in a \_\_\_\_\_ charge.
  - □ Includes Lys, Arg, & His.
- Presence of ionizable \_\_\_\_\_ in the R-groups render these amino acids \_\_\_\_\_

### **EXAMPLE:**

#### Positively Charged/Basic Amino Acids



### **CONCEPT: CHARGED AMINO ACIDS**

# **Grouping Charged Amino Acids as Acids or Bases**

- ●Recall: 1) Acids \_\_\_\_\_ H<sup>+</sup>. 2) Bases \_\_\_\_\_ H<sup>+</sup>.
- Question: Why aren't positively-charged amino acids (K, R, H) grouped as acidic if they have "extra" H's to donate?
  - □ Acid/base groupings of amino acids are defined by behaviors under conditions (pH ~7).

## **EXAMPLE:**





**PRACTICE:** Draw in the R-groups from memory for each of the charged amino acids at physiological pH.

$$\begin{bmatrix} \mathsf{D} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{K} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{K} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{K} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{H} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \\ \mathsf{H}_{3}^{\oplus} \mathsf{N} \end{bmatrix} = \begin{bmatrix} \mathsf{$$

# **CONCEPT:** CHARGED AMINO ACIDS

**PRACTICE:** Fill-in the missing R-groups for the following peptide from memory: H-E-K. Circle the acidic amino acids.

**PRACTICE:** Which of the following amino acids does not have a basic R-group?

- a) H
- b) S
- c) R
- d) K

**PRACTICE:** Circle all the following amino acids with a basic R-group.

- a) Asp
- b) Lys
- c) A
- d) E
- e) Asn