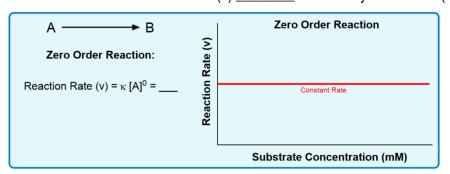
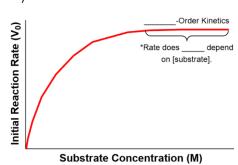

CONCEPT: REACTION ORDERS

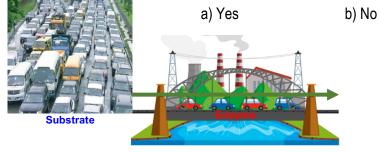
- Reaction order: a proportionality relationship between reaction rate (v) & each ______ [substrate].
 - □ Recall: frequently equals the _____ of the substrate but must be experimentally determined.
 - □ *Elementary* reactions (those with only _____ transition state): *Substrate Coefficients = reaction order*.
- Overall Reaction Order: always equal to the of the individual reaction orders for all substrates.

EXAMPLE: Determine the overall reaction order for the following reactions.


●There are ____ common overall reaction orders: □ _____ Order □ ___ Order □ ___ Order

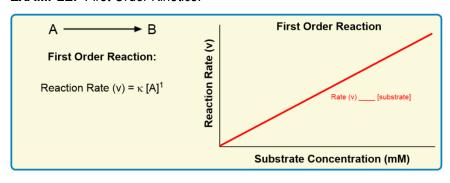

PRACTICE: The rate law for an elementary and/or nonelementary reaction is _____:

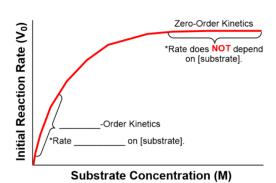
- a) always determined from the balanced chemical reaction. c) experimentally determined.
- b) the rate law for the fastest step in the reaction mechanism. d) always 2nd order overall if there are 2 reactants.


Zero Order Reactions

- Zero Order Reactions: [substrate] has ______ effect on reaction rate (v).
 - □ Zero-order kinetics are exhibited when an enzyme is _____ with substrate.
 - \square Zero Order rate constant (k) _____ are Molarity x seconds⁻¹ (M s⁻¹).

EXAMPLE: Zero Order Kinetics: Does increasing the # of cars also increase the rate that the cars cross the 1-lane bridge?

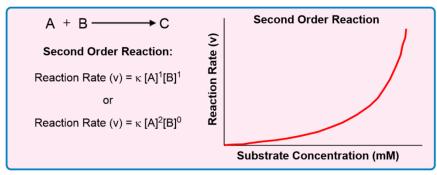


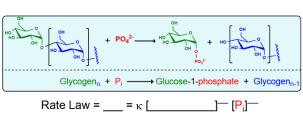

CONCEPT: REACTION ORDERS

1st Order Reactions

- _____ Order Reactions: reactions where the rates are directly proportional to only _____ [substrate].
 - \Box Includes _____ reactions involving only a single substrate (ex. A \rightarrow B).
 - \Box First Order rate constant (k) units are seconds⁻¹ (s⁻¹).

EXAMPLE: First Order Kinetics.





2nd Order Reactions

- Order Reactions: reactions where the rates are directly proportional to _____ [substrates].
 - □ 2nd Order reaction rate could also be proportional to the _____ of only one [substrate].
 - \Box Includes _____ reactions involving two substrates (ex. A + B \rightarrow C).
 - \square Second Order rate constant (k) units are Molar-1 x seconds-1 (M-1s-1).

EXAMPLE: Second Order Kinetics.

PRACTICE: What is the overall reaction order for the following rate law? $v = k [A]^1 [B]^1 [C]^0$

- a) Zero order.
- b) 1st order.

- c) 2nd order. d) 3rd order.

Pseudo 1st Order Reactions

- _____-First-Order Reactions: those that are actually 2nd order reactions but ______ to be 1st order reactions.
 - □ Can occur when concentration of one substrate is much _____ than another (ex. [B] >>> [A]).
 - □ This makes substrate A the _____ reagent, so it appears that [A] alone dictates rate.

CONCEPT: REACTION ORDERS

PRACTICE: Which of the following options is true for a reaction with the provided rate law: $v = k [NO]^2 [O_2]$

- a) The reaction has an overall order of 3.
- b) The reaction is first order with respect to the reactant O₂.
- c) The reaction is endothermic.
- d) The reaction has an overall order of 2.
- e) a & b are true.
- f) b & c are true.

PRACTICE: Consider the nonenzymatic elementary reaction from A \rightarrow B. When the initial [A] = 20 mM, the reaction velocity is measured as 5 µM/min. Determine the reaction order and calculate the rate constant for the reaction.

- a) 1st order reaction; $k = 100 \text{ min}^{-1}$.
- e) 2^{nd} order reaction; $k = 100 \text{ min}^{-1}$.
- b) 1st order reaction; $k = 0.25 \text{ min}^{-1}$.
- f) 2^{nd} order reaction ; $k = 0.25 \text{ min}^{-1}$.
- c) 1^{st} order reaction; $k = 2.5 \times 10^{-4} \text{ min}^{-1}$.
- g) 2^{nd} order reaction; $k = 2.5 \times 10^{-4} \text{ min}^{-1}$.
- d) 1st order reaction; $k = 4.0 \times 10^3 \text{ min}^{-1}$. h) 2nd order reaction; $k = 4.0 \times 10^3 \text{ min}^{-1}$.

PRACTICE: Consider the nonenzymatic elementary reaction A \rightarrow B. When the [A] = 20 mM, the reaction velocity is measured as 5 µM of "B" produced per minute. Calculate the rate constant for the reaction. Hint: Consider the rate law.

- a) $6.0 \times 10^2 \text{ min}^{-1}$.
- b) 2.5 x 10⁻⁴ min⁻¹.
- c) 3.7 x 10⁻⁵ min⁻¹.
- d) 9.1 x 10⁻² min⁻¹.

PRACTICE: The hypothetical elementary reaction $2A \rightarrow B + C$ has a rate constant of 10^{-6} M⁻¹s⁻¹. What is the reaction velocity when the concentration of A is 10 mM?

- a) $8 \times 10^{-3} \text{ Ms}^{-1}$.
- b) $2 \times 10^{-7} \text{ Ms}^{-1}$.
- c) 4 x 10⁻⁵ Ms⁻¹.
- d) 1 x 10⁻¹⁰ Ms⁻¹.