CONCEPT: REACTION ORDERS - Reaction order: a proportionality relationship between reaction rate (v) & each ______ [substrate]. - □ Recall: frequently equals the _____ of the substrate but must be experimentally determined. - □ *Elementary* reactions (those with only _____ transition state): *Substrate Coefficients = reaction order*. - Overall Reaction Order: always equal to the of the individual reaction orders for all substrates. **EXAMPLE:** Determine the overall reaction order for the following reactions. ●There are ____ common overall reaction orders: □ _____ Order □ ___ Order □ ___ Order **PRACTICE:** The rate law for an elementary and/or nonelementary reaction is _____: - a) always determined from the balanced chemical reaction. c) experimentally determined. - b) the rate law for the fastest step in the reaction mechanism. d) always 2nd order overall if there are 2 reactants. ## **Zero Order Reactions** - Zero Order Reactions: [substrate] has ______ effect on reaction rate (v). - □ Zero-order kinetics are exhibited when an enzyme is _____ with substrate. - \square Zero Order rate constant (k) _____ are Molarity x seconds⁻¹ (M s⁻¹). **EXAMPLE:** Zero Order Kinetics: Does increasing the # of cars also increase the rate that the cars cross the 1-lane bridge? # **CONCEPT: REACTION ORDERS** ## 1st Order Reactions - _____ Order Reactions: reactions where the rates are directly proportional to only _____ [substrate]. - \Box Includes _____ reactions involving only a single substrate (ex. A \rightarrow B). - \Box First Order rate constant (k) units are seconds⁻¹ (s⁻¹). #### **EXAMPLE:** First Order Kinetics. #### 2nd Order Reactions - Order Reactions: reactions where the rates are directly proportional to _____ [substrates]. - □ 2nd Order reaction rate could also be proportional to the _____ of only one [substrate]. - \Box Includes _____ reactions involving two substrates (ex. A + B \rightarrow C). - \square Second Order rate constant (k) units are Molar-1 x seconds-1 (M-1s-1). # **EXAMPLE:** Second Order Kinetics. **PRACTICE:** What is the overall reaction order for the following rate law? $v = k [A]^1 [B]^1 [C]^0$ - a) Zero order. - b) 1st order. - c) 2nd order. d) 3rd order. # Pseudo 1st Order Reactions - _____-First-Order Reactions: those that are actually 2nd order reactions but ______ to be 1st order reactions. - □ Can occur when concentration of one substrate is much _____ than another (ex. [B] >>> [A]). - □ This makes substrate A the _____ reagent, so it appears that [A] alone dictates rate. # **CONCEPT: REACTION ORDERS** **PRACTICE:** Which of the following options is true for a reaction with the provided rate law: $v = k [NO]^2 [O_2]$ - a) The reaction has an overall order of 3. - b) The reaction is first order with respect to the reactant O₂. - c) The reaction is endothermic. - d) The reaction has an overall order of 2. - e) a & b are true. - f) b & c are true. **PRACTICE:** Consider the nonenzymatic elementary reaction from A \rightarrow B. When the initial [A] = 20 mM, the reaction velocity is measured as 5 µM/min. Determine the reaction order and calculate the rate constant for the reaction. - a) 1st order reaction; $k = 100 \text{ min}^{-1}$. - e) 2^{nd} order reaction; $k = 100 \text{ min}^{-1}$. - b) 1st order reaction; $k = 0.25 \text{ min}^{-1}$. - f) 2^{nd} order reaction ; $k = 0.25 \text{ min}^{-1}$. - c) 1^{st} order reaction; $k = 2.5 \times 10^{-4} \text{ min}^{-1}$. - g) 2^{nd} order reaction; $k = 2.5 \times 10^{-4} \text{ min}^{-1}$. - d) 1st order reaction; $k = 4.0 \times 10^3 \text{ min}^{-1}$. h) 2nd order reaction; $k = 4.0 \times 10^3 \text{ min}^{-1}$. **PRACTICE:** Consider the nonenzymatic elementary reaction A \rightarrow B. When the [A] = 20 mM, the reaction velocity is measured as 5 µM of "B" produced per minute. Calculate the rate constant for the reaction. Hint: Consider the rate law. - a) $6.0 \times 10^2 \text{ min}^{-1}$. - b) 2.5 x 10⁻⁴ min⁻¹. - c) 3.7 x 10⁻⁵ min⁻¹. - d) 9.1 x 10⁻² min⁻¹. **PRACTICE:** The hypothetical elementary reaction $2A \rightarrow B + C$ has a rate constant of 10^{-6} M⁻¹s⁻¹. What is the reaction velocity when the concentration of A is 10 mM? - a) $8 \times 10^{-3} \text{ Ms}^{-1}$. - b) $2 \times 10^{-7} \text{ Ms}^{-1}$. - c) 4 x 10⁻⁵ Ms⁻¹. - d) 1 x 10⁻¹⁰ Ms⁻¹.