CONCEPT: MYOGLOBIN VS HEMOGLOBIN

Myoglobin (_____) & hemoglobin (_____): well-studied proteins & great examples for many protein/enzyme concepts.

 ¬ Mb & Hb are not technically enzymes; HOWEVER, allosteric regulation does not only apply to enzymes.

 ¬ Myoglobin: ______ protein facilitating oxygen diffusion, storage & supply to muscle tissues in vertebrates.

 ¬ Hemoglobin: heterotetrameric allosteric protein (2 α & 2 β subunits) that circulates & transports oxygen via blood.

●Both are capable of *reversibly* binding _____ gas (O₂) due to their ____ prosthetic group(s).

• Though Mb & Hb need to bind O₂, they also need to ______ O₂ (reversible binding).

PRACTICE: Which of the following statements are true?

- a) Both myoglobin and hemoglobin irreversibly bind oxygen gas (O2).
- b) Myoglobin has a single subunit, whereas hemoglobin has four identical subunits.
- c) Hemoglobin and myoglobin each contain a single heme group.
- d) Each individual subunit of hemoglobin contains a heme group.
- e) Hemoglobin transports, stores and supplies oxygen in the muscle tissue.
- f) A and B.
- g) A and C.
- h) B and C.

CONCEPT: MYOGLOBIN VS HEMOGLOBIN

Myoglobin's Protein-Ligand Interactions

- Protein-ligand affinity (____) & fractional saturation (____ or ____) applies directly to myoglobin.
 - □ Recall: Fractional Saturation (θ or Y): the ratio of oxygenated protein over total protein: $\theta = \frac{[PL]}{[PL] + [P]}$

PRACTICE: If Mb's $K_d = 2.5$ M and the $[O_2] = 7.5$ M, what % saturated will Mb be?

- a) 12%
- c) 0.75%
- b) 75%
- d) 64%

Hemoglobin's Protein-Ligand Interactions

- ●Hb's protein-ligand interactions are _____ complicated than Mb's since Hb has a more complex structure.
- Recall: Hemoglobin is an *allosteric* protein with ______ subunits, each of which can bind a ligand (O₂).

n = # of L-binding sites

●Recall: Coefficients in a reaction (#'s in front of molecules) are included into Keq as _____

$$K_d = \frac{[Hb] + [O_2]}{[Hb(O_2)_]} = \frac{k_d}{k_a} = \frac{1}{K_a}$$

$$\theta = Y = \frac{[Hb(O_2)]}{[Hb(O_2)] + [Hb]} = \frac{[O_2]}{[O_2] + K_d}$$

CONCEPT: MYOGLOBIN VS HEMOGLOBIN

PRACTICE: The differences between hemoglobin and myoglobin include:

- a) Hemoglobin is a tetramer whereas myoglobin is a monomer.
- b) Hemoglobin exhibits a sigmoidal O₂ saturation curve while myoglobin exhibits a hyperbolic curve.
- c) Hemoglobin exhibits O₂ binding cooperativity while myoglobin does not.
- d) All of the above.

More Background Info on Hemoglobin

- •Hemoglobin is found within _____ blood cells (RBC or erythrocytes).
 - $\hfill\Box$ Each RBC has ~270 million molecules of hemoglobin.
 - □ One drop of blood the size of a pinhead has ~5 million RBC.

Myoglobin vs. Hemoglobin Recap

•Let's recap some of the similarities & differences between myoglobin & hemoglobin:

# Of Subunits	# Of Heme Groups	Located in:	Reversibly Bind O ₂ ?