CONCEPT: SKELETAL MUSCLE CONTRACTION

Sliding Filament Model

• Sliding Filament Model: describes the nature of a contracting sarcomere (_____ zone & ____ bands reduce in size).

Thick myosin filaments <i>pull</i> thin actin microfilaments towards _	disk d	uring contraction to	muscle
band (length of myosin filaments) does NOT reduce in size	ze, but	_ disks are <i>pulled closer</i> to the	disk.

□ *Volume* of the muscle is ______, but the muscle becomes shorter upon contraction.

PRACTICE: Which statement best describes the sliding filament model of a sarcomere contraction?

- a) The A band and the H zone both become smaller.
- b) The I bands gets smaller but the H zone remains the same.
- c) The I bands gets smaller while the A band gets larger.
- d) The I bands and H zone get smaller while the A band remains the same size.

CONCEPT: SKELETAL MUSCLE CONTRACTION

Actomyosin Cycle Leads to Muscle Contraction

- Actomyosin Cycle: a _____-step cycle of biochemical events that results in only the contraction of a sarcomere.
 - 1 _____ ATP, myosin heads bind tightly to the actin microfilaments.
 - 2 ATP binding to myosin head _____ the actin-myosin interaction, causing myosin to release actin.
 - **3** Upon ATP hydrolyzation to ADP + P_i, the myosin head *changes conformation* to a "_____ energy" state.
 - □ This causes myosin head to "cock-back" & weakly interact with actin closer to the _____ disk.
 - 4 Release of Pi causes myosin to ______ its actin binding.
 - 5 Myosin "power-stroke" *pulls* actin towards the ____ disk, returns myosin to its original state.
 - □ ADP is *released* & cycle is repeated until myosin-binding-sites on actin are _____.

EXAMPLE: Actomyosin Cycle.

Summary of Actomyosin Cycle

Step #	Details	
1	No ATP = "You bind to me".	
2	ATP binds & myosin is released.	
3	ATP hydrolysis cocks-back myosin.	
4	P _i released.	
5	Power-stroke & ADP released.	

CONCERT. CIVELETAL MUICOLE CONTRACTION						
CONCEPT: SKELETAL MUSCLE CONTRACTION PRACTICE: Fill-in the blanks with numbers (1-7) to put the events	of the actomycein cycle in order from heginning to end					
a): Myosin releases Pi.	e): Myosin-actin interaction is broken.					
b) 1 : Myosin binds ATP.	f): Myosin head pivots to a high-energy state.					
c): Myosin head bonds tightly to thin actin filament.	g): Myosin hydrolyzes ATP to ADP and Pi.					
d): Myosin power stroke occurs.	3, , , ,					
Muscle Relaxation via Troponin & Tropomyosin Regulation						
●Myosin & actin together make up about 80% of the protein mass in a muscle fiber cell.						
□ Remaining 20% consists mainly of other types of	thin filaments: 1) Troponin. & 2) Tropomyosin.					
□ Iroponin-tropomyosin-complex: binds actin &	myosin-binding-sites for muscle relaxation.					
●Troponin-tropomyosin-complex muscle contract	tions so they ONLY occur with nervous system signals.					
●Upon receiving a nervous system signal, a myofibril's sarcoplasmic reticulum is stimulated to release						
□: binds to released Ca₂+ & causes a <i>conformational change</i> in the troponin-tropomyosin-complex.						
□ Tropomyosin's change myosin-binding-sit	es on actin, allowing the actomyosin cycle to initiate.					
EXAMPLE: Troponin-Tropomyosin Regulation.						
Relaxed muscle	Contracted muscle					
Actin Microfilament Troponin Tropomyosin	Myosin-Binding-Sites Ca ²⁺					

Tropomyosin _____ myosin-binding-sites on actin, preventing muscle contraction.

Myosin Head

_____ binds to **troponin** allowing for muscle contraction.

- ●Over time, the released Ca2+ is returned to the sarcoplasmic reticulum, _____ the [Ca2+].
 - □ Low [Ca2+] allows troponin-tropomyosin-complex to _____ actin's myosin-binding-sites for muscle relaxation.

CONCEPT: SKELETAL MUSCLE CONTRACTION

PRACTICE: Muscle contraction is directly caused by:

- a) Conformational changes in actin.
- c) Conformational changes in the A band.
- b) Conformational changes in myosin.
- d) Conformational changes in the Z disk.

PRACTICE: Which of the following does not occur during a muscle contraction?

- a) "Power stroke"; the thick filament pulls the actin thin filament towards the M line.
- b) ATP is hydrolyzed; the heads of myosin shift into a high energy state.
- c) ATP binds to myosin heads; increases the affinity of the myosin head for actin.
- d) The myosin head rebinds to the actin closer to the Z disk prior to the power-stroke.
- e) All the above occur.

PRACTICE: Which of the following is false concerning the sliding-filament model of muscle contraction?

- a) The myosin head hydrolyzes ATP causing a conformational shift of the myosin head.
- b) When a muscle shortens or lengthens, the H zones and I bands of sarcomeres change in size.
- c) Neither the thick or thin filaments change in length during a muscle contraction.
- d) After ATP hydrolyzation, the myosin head first releases P_i before it releases the ADP.
- e) Actin detaches from the myosin head with energy from ATP hydrolysis.

PRACTICE: Which of the following statements correctly describes the relationship between cytosolic [Ca₂₊] and the corresponding sarcomere response?

- a) Increasing [Ca2+] causes troponin to bind to tropomyosin.
- b) Increasing [Ca₂₊] causes movement of tropomyosin, exposing myosin-binding-sites on actin.
- c) Decreasing [Ca2+] promotes interactions between actin and myosin.
- d) Increasing [Ca2+] causes troponin and tropomyosin to bind to actin.
- e) Increasing [Ca2+] causes dissociation of Ca2+ from troponin.