CONCEPT: HEME PROSTHETIC GROUP

Why is the Heme Prosthetic Group on Mb/Hb Important?

- Amino acids lack affinity to O₂, so Mb & Hb binding to O₂ depends on a prosthetic group called ______.
- ●Unlike amino acids, *iron* (Fe₂₊) can reversibly bind O₂, but unbound _____ iron is reactive & turns O₂ into free radicals.
 - □ *Problem #1*: free iron generates free radicals, which can damage and/or _____ the cell.
 - □ Problem #2: Fe₂₊ in free-heme (heme not bound to protein) is oxidized to Fe₃₊, which does NOT bind O₂.
 - □ Solution: Fe₂₊ in protein-bound heme is less reactive & reversibly binds O₂.

Structure of Heme

- •Heme is mostly a nonpolar structure surrounded by _____ amino acids deep within the Hb & Mb proteins.
 - □ Heme attaches to the Hb & Mb proteins via ______ interactions.
- ●Ferrous _____ (Fe2+) complexes with a *planar tetra*pyrrole ring system (protoporphyrin IX) to form the _____.

- •O₂ binds to Fe₂₊ _____ the *plane* of the heme prosthetic group *without* reacting to form free radicals.
- ◆Carbon monoxide (CO) binds heme stronger than O₂ & outcompetes O₂ for binding to Fe₂+, which is why CO is

Side of Heme

CONCEPT: HEME PROSTHETIC GROUP

Interactions of Fe2+ in the Heme

- The Fe2+ atom of the protein-bound heme can form a total of _____ noncovalent bonds:
 - □ _____ bonds with N atoms of protoporphyrin IX (same plane).
 □ ____ bond with a proximal His residue (below).
 - □ ____ bond with O₂ (above).

EXAMPLE: Fe₂₊ Interactions.

- ●A _____ His residue stabilizes O₂ in the O₂-bound heme via hydrogen bonding & prevents conversion of Fe₂+ to Fe₃+.
 - □ The *distal* His also _____ carbon monoxide's (CO) ability to bind to the heme group.

PRACTICE: When O₂ binds to a heme group, the two bonds of Fe₂₊ that are not planar with the heme are occupied by:

- a) One O₂ molecule and one Ser amino acid atom.
- c) One O₂ molecule and a nitrogen atom of the heme.
- b) One O₂ molecule and one His amino acid atom.
- d) Two O₂ molecules.

Myoglobin's Heme Interactions

•Like hemoglobin, myoglobin's heme group forms very *similar* Fe₂₊ interactions:

CONCEPT: HEME PROSTHETIC GROUP

PRACTICE: The distal histidine residue in myoglobin acts to:

- a) Prevent oxidation of the heme Fe₂₊.
- b) Lower the relative affinity for CO.
- c) Assist in the binding of O2.
- d) Prevent release of N2.
- e) a & b.
- f) a, b & c.
- g) All the above are true.

Heme O2-Binding Causes Hb's Conformational Changes

- Recall: Hb is an _____ protein with ____ state & ____ state conformations.
- •Binding of O₂ to the heme prosthetic group causes a slight change in the heme's conformation.
 - □ Fe2+ atom becomes _____ upon binding to O2, allowing it to shift up *into the plane* of the heme.
 - □ This ultimately causes the other Hb protein subunits to change conformations too from T state → _____ state.
 - □ Leads to _____ cooperativity between Hb subunits.

Deoxygenated Hb

PRACTICE: In hemoglobin, the equilibrium transition from T state to R state is triggered by:

- a) Fe₂₊ binding.
- c) Oxygen binding.
- b) Heme binding.
- d) Protease cleavage.