CONCEPT: HEME PROSTHETIC GROUP ## Why is the Heme Prosthetic Group on Mb/Hb Important? - Amino acids lack affinity to O₂, so Mb & Hb binding to O₂ depends on a prosthetic group called ______. - ●Unlike amino acids, *iron* (Fe₂₊) can reversibly bind O₂, but unbound _____ iron is reactive & turns O₂ into free radicals. - □ *Problem #1*: free iron generates free radicals, which can damage and/or _____ the cell. - □ Problem #2: Fe₂₊ in free-heme (heme not bound to protein) is oxidized to Fe₃₊, which does NOT bind O₂. - □ Solution: Fe₂₊ in protein-bound heme is less reactive & reversibly binds O₂. #### **Structure of Heme** - •Heme is mostly a nonpolar structure surrounded by _____ amino acids deep within the Hb & Mb proteins. - □ Heme attaches to the Hb & Mb proteins via ______ interactions. - ●Ferrous _____ (Fe2+) complexes with a *planar tetra*pyrrole ring system (protoporphyrin IX) to form the _____. - •O₂ binds to Fe₂₊ _____ the *plane* of the heme prosthetic group *without* reacting to form free radicals. - ◆Carbon monoxide (CO) binds heme stronger than O₂ & outcompetes O₂ for binding to Fe₂+, which is why CO is Side of Heme ## **CONCEPT: HEME PROSTHETIC GROUP** #### Interactions of Fe2+ in the Heme - The Fe2+ atom of the protein-bound heme can form a total of _____ noncovalent bonds: - □ _____ bonds with N atoms of protoporphyrin IX (same plane). □ ____ bond with a proximal His residue (below). - □ ____ bond with O₂ (above). #### **EXAMPLE:** Fe₂₊ Interactions. - ●A _____ His residue stabilizes O₂ in the O₂-bound heme via hydrogen bonding & prevents conversion of Fe₂+ to Fe₃+. - □ The *distal* His also _____ carbon monoxide's (CO) ability to bind to the heme group. **PRACTICE:** When O₂ binds to a heme group, the two bonds of Fe₂₊ that are not planar with the heme are occupied by: - a) One O₂ molecule and one Ser amino acid atom. - c) One O₂ molecule and a nitrogen atom of the heme. - b) One O₂ molecule and one His amino acid atom. - d) Two O₂ molecules. ### **Myoglobin's Heme Interactions** •Like hemoglobin, myoglobin's heme group forms very *similar* Fe₂₊ interactions: ## **CONCEPT: HEME PROSTHETIC GROUP** **PRACTICE:** The distal histidine residue in myoglobin acts to: - a) Prevent oxidation of the heme Fe₂₊. - b) Lower the relative affinity for CO. - c) Assist in the binding of O2. - d) Prevent release of N2. - e) a & b. - f) a, b & c. - g) All the above are true. # Heme O2-Binding Causes Hb's Conformational Changes - Recall: Hb is an _____ protein with ____ state & ____ state conformations. - •Binding of O₂ to the heme prosthetic group causes a slight change in the heme's conformation. - □ Fe2+ atom becomes _____ upon binding to O2, allowing it to shift up *into the plane* of the heme. - □ This ultimately causes the other Hb protein subunits to change conformations too from T state → _____ state. - □ Leads to _____ cooperativity between Hb subunits. Deoxygenated Hb **PRACTICE:** In hemoglobin, the equilibrium transition from T state to R state is triggered by: - a) Fe₂₊ binding. - c) Oxygen binding. - b) Heme binding. - d) Protease cleavage.