CONCEPT: TITRATIONS OF AMINO ACIDS WITH IONIZABLE R-GROUPS

•Amino acids with ionizable R-groups have ____ inflection/equivalence points.

EXAMPLE: Titration Curve Review of Amino Acid with Ionizable R-Group.

What does the pink line represent? What does the **vellow** line represent? group. (No more COOH). point of point of _____group. (No more _____ R-group). 10 Histidine What do the orange dot & lines represent? What does the light blue line represent? & pK_a of ___ group. point of _ group. (No more NH₃⁺). What do the blue dot & lines represent? & pK_a of ____-group. What does the **black** curve represent? titration curve. What do the green dot & lines represent? & pKa of _ OH- (equivalents)

Drawing Amino Acids with Ionizable R-Groups from Titration Curves

•pl will always be equal to the equivalence point that allows the _____ of a net charge.

EXAMPLE: Draw the predominate structure of His at each colored region of its titration curve & calculate its pl.

Net Charge = _____

Net Charge = _____

Net Charge = _____

Net Charge = _____

CONCEPT: TITRATIONS OF AMINO ACIDS WITH IONIZABLE R-GROUPS

PRACTICE: A) Determine the pl of Glu & mark it on the provided titration curve.

- a) 6.96
- b) 5.93
- c) 7.48
- d) 3.22

B) Use the titration curve to draw the predominate structures of Glu at pH = 1.0, pH = 3.0, pH = 7.0, & pH = 11.0.

Glu at pH = 1.0

Glu at pH = 3.0

Glu at pH = 7.0

Glu at pH = 11.0

PRACTICE: Draw the predominate structures of K at the indicated sections of its titration curve. Mark the pl on the curve.

Red

Blue

Yellow

Purple

CONCEPT: TITRATIONS OF AMINO ACIDS WITH IONIZABLE R-GROUPS

PRACTICE: Label each arrow on Asp's titration curve & draw its predominate structure at each colored region.

- C) R-group pK_a ($pK_a = 3.9$).
- D) Amino group equivalence point.
- E) Carboxyl group equivalence point.
- F) R-group equivalence point.

