CONCEPT: SPECIFIC ACTIVITY

a quantitative measure of the function & amount of target-protein.
Assay: any test or ______ that measures the presence & activity of the target protein.
Assay is performed on a _____ portion of the protein sample to check for target-protein activity.
If two different samples have the same activity, then they have amounts of target-protein.

EXAMPLE: Compare the *activity* of the red protein () in both flasks.

Which flask has greater activity?

- a) Flask #1
- b) Flask #2
- c) Both flasks have equal activity.

Specific Activity Measures Protein Purity

- Question: how can biochemists tell if they have successfully purified a protein?
- Protein purity can be measured by the target-protein's ______ activity.
 - □ Specific activity: _____ of target-protein activity over the total amount of all protein present.
 - □ Specific activity _____ during purification & becomes *maximal/constant* with a pure protein.

EXAMPLE: Compare the *specific activity* of the red protein () in both flasks.

Purification Technique/Step	Volume of Sample (mL)	Total Protein (mg)	Target-Protein Activity (units)	Specific Activity (units/mg)
Crude Cellular Extract	1,400	10,000	100,000	10
2. Salting Out	280	3000	96,000	32
3. Ion-Exchange Chromatography	90	400	80,000	200
4. Size-Exclusion Chromatography	80	100	60,000	600
5. Affinity Chromatography	6	3	45,000	15,000
6. 2 nd Affinity Chromatography	4	2	30,000	15,000

*_____ specific activity means a more purified protein.

CONCEPT: SPECIFIC ACTIVITY

PRACTICE: A biochemist discovers and purifies a new enzyme and generates the purification table below.

A) Fill-in the table below with the specific activity of the enzyme after each purification procedure.

Purification Technique/Step	Volume of Sample (mL)	Total Protein (mg)	Target-Protein Activity (units)	Specific Activity (units/mg)	Relative Purity
Crude Cellular Extract	1200	20,000	4,000,000		N/A
2. Differential Centrifugation	350	12,000	3,000,000		
3. Salting Out	110	4,000	1,500,000		
4. Ion-Exchange Chromatography	60	200	800,000		
5. Size-Exclusion Chromatography	35	50	750,000		
6. Affinity Chromatography	5	45	675,000		

B)	According to the data,	which purification step	was most effective to give	e the greatest relative	increase in purity?
----	------------------------	-------------------------	----------------------------	-------------------------	---------------------

C)	Which purification step	was least effective t	to give the lowest	t relative increase	in purity?
----	-------------------------	-----------------------	--------------------	---------------------	------------

D) Based on the results in the table, should the biochemist be convinced that the enzyme is pure after step 6? Why?