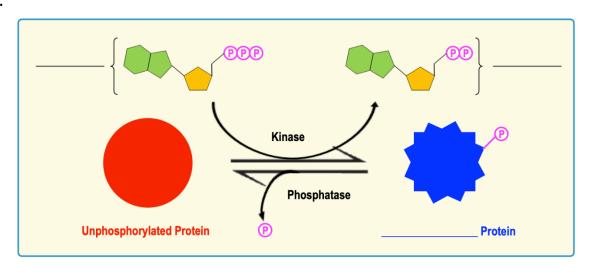

CONCEPT: PHOSPHORYLATION


- Phosphorylation: the covalent attachment of _____ groups.
 - □ This is one of the most common & important forms of enzyme regulation.

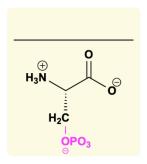
ATP is a Common Source of Phosphorylation

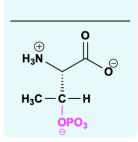
- •Adenosine triphosphate (_____) molecules are typically the source of the phosphate groups.
 - □ _____: enzymes that catalyze phosphorylation reactions.
 - □ _____: enzymes that catalyze the opposite reaction that _____ phosphate groups.

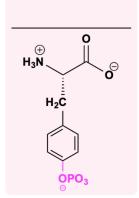
EXAMPLE:

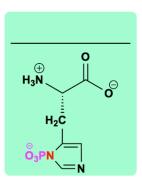
PRACTICE: During kinase phosphorylation, which phosphate group is removed from ATP in the figure below?

a)
$$\alpha$$


- b) β
- c) γ
- d) α and β
- e) β and γ


CONCEPT: PHOSPHORYLATION


Amino Acid Phosphorylation


- Some amino acids can be phosphorylated to make
 - □ Hydroxyl groups on _____, ____ & ____ can be *replaced* with phosphate groups.
 - □ _____ can also be phosphorylated.
- ●Phosphorylation makes Ser, Thr, Tyr & His even _____ polar & can lead to changes in enzyme conformations/states.
 - □ Phosphate groups have an overall _____ charge & allow for stronger _____ bonding.

EXAMPLE: Amino Acid Phosphorylation.

PRACTICE: Covalent modification of an enzyme usually involves phosphorylation / dephosphorylation of:

- a) Lysine residue.
- c) Serine residue.
- b) Proline residue.
- d) Aspartate residue.

PRACTICE: When the active site of an enzyme is phosphorylated on one of its catalytic amino acid residues, the overall

_____ charge of phosphate groups would ______ the affinity for a polar, negatively charged substrate.

- a) positive; lower.
- c) negative; increase.
- e) positive; not change.

- b) negative; lower.
- d) positive; increase. f) neutral; not change.