•Chymotrypsin catalytic mechanism has _____ phases: 1) _____ phase. 2) _____ phase.

1) Acylation Phase

● Chymotrypsin's _____-step acylation phase: covalent catalysis forms an ester linkage & the peptide bond is ______.

Nucleophilic Acyl Substitution:

- 1 Substrate Binding: peptide to be cleaved binds to chymotrypsin's _____ site.
- 2 Nucleophilic attack: _____-195 attacks carbonyl carbon of substrate to form unstable tetrahedral intermediate.
 - □ A region in chymotrypsin's active site (*oxyanion hole*) ______ the tetrahedral intermediate.
 - □ Newly formed _____ covalently links chymotrypsin's **Ser-195** to the carbonyl carbon of substrate.
- **3** Remove LG: tetrahedral intermediate "collapses", His-57 acts as an _____ & peptide bond is broken.
- 4 End of Phase: enzyme is ______ & the newly formed amine portion of substrate diffuses away.

EXAMPLE: Acylation Phase of Chymotrypsin's Catalytic Mechanism.

2) Deacylation Phase

•Chymotrypsin'sstep deacylation	n phase: ester linkage is hydrolyzed to	_ the original chymotrypsin
Ester Hydrolyzation:		
5 Substrate Binding:	_ enters chymotrypsin's active site and a series of simila	ar steps repeats.
6 Nucleophilic attack: His-57	(base) deprotonates H2O, creating nucleophile th	at attacks carbonyl carbon.
□ Once again,	hole in chymotrypsin's active site stabilizes	the tetrahedral intermediate
7 Remove LG: tetrahedral inte	ermediate "collapses", <mark>His-57</mark> acts as an & este	er bond is
8 End of Phase: enzyme is	-acvlated & newly formed carboxylic acid portion of	substrate diffuses away.

_____ and ready for another round of catalysis.

EXAMPLE: Deacylation Phase of Chymotrypsin's Catalytic Mechanism.

□ Original chymotrypsin enzyme is ____

PRACTICE: How is chymotrypsin's specificity for its substrate determined?

- a) Conformational change upon binding of the substrate.
- b) Binding of the N-terminus amino acid at the active site.
- c) Covalent binding of the His residue to the substrate.
- d) Binding of the proper amino acid into a deep pocket on the enzyme.

PRACTICE: Chymotrypsin's acylation phase is below. The catalytic process of ______ is illustrated

by arrow # ____ is illustrated by arrow # ____ is illustrated by arrow # ____.

- a) General-Base catalysis; 1; covalent catalysis; 2.
- b) General-Acid catalysis; 1; covalent catalysis; 3.
- c) Covalent catalysis; 2; covalent catalysis; 3.
- d) Covalent catalysis; 1; General-Base catalysis; 3.

Recap of Chymotrypsin's Catalytic Mechanism

•Let's recap all the steps/phases of chymotrypsin's catalytic mechanism:

c)	Forms a tetrahedral intermediate with part of the substrate.
d)	Is reduced by Aspartate 102.
e)	Is oxidized by Histidine 57.
f)	A and C.
g)	A, C and E.
PRAC1	TICE: Sequentially number the following steps of Chymotrypsin's catalytic mechanism in the correct order from 1-8:
a)	Released newly formed amine portion of the substrate diffuses away
b)	His-57 deprotonates the Ser-195 hydroxyl group, generating a stronger nucleophile
c)	Tetrahedral intermediate collapses & His-57 donates a H ₊ to N of scissile bond (cleaved peptide bond)
d)	Via general-base-catalysis, His-57 deprotonates a water molecule, generating OH
e)	Tetrahedral intermediate collapses & His-57 donates a proton to Ser-195 (cleaving ester bond)
f)	Released newly formed carboxylic acid portion of the substrate diffuses away & enzyme is restored
g)	Hydroxide ion attacks the carbonyl group of the substrate, forming another tetrahedral intermediate
h)	Nucleophilic Ser-195 attacks the carbonyl C of the substrate forming a tetrahedral intermediate

PRACTICE: In the mechanism of chymotrypsin, serine-195:

a) Functions as a nucleophile.

b) Functions as an electrophile.