
CONCEPT: GLYCOGEN

Glycogen is Amylopectin with More Branching

Polysaccharide	Type	Repeating Sugar(s)	Glycosidic Linkage	Function	Organism	Branched?
Glycogen		D	1,4	Storage		(α-1,)

 \Box Glycogen *branchpoints* occur *more* frequently, every 8-12 residues, via ($\alpha 1 \rightarrow \underline{\hspace{1cm}}$) glycosidic linkages.

PRACTICE: The storage form of carbohydrates in animals is:

- a) Glucose.
- b) Amylopectin.
- c) Lactose.
- d) Glycogen.

PRACTICE: In glycogen there are:

- a) Alpha 1-4 glycosidic bonds only.
- b) Alpha 1-5 glycosidic bonds only.
- c) Alpha 1-6 glycosidic bonds only.
- d) Alpha 1-4 and 1-6 glycosidic bonds only.
- e) Alpha 1-4 and beta 1-4 glycosidic bonds.

CONCEPT: GLYCOGEN

Polysaccharide Review

•Let's review the polysaccharides we've covered so far:

Polysaccharide	Type	Repeating Sugar(s)	Glycosidic Linkage	Function	Organism	Branched?
Cellulose	Homo-	D-Glucose	1,4		Plants	No
	Homo-	NAG	β-1,4	Stuctural	Animals	No
Peptidoglycan		NAG & NAM	β-1,4	Stuctural		No
Starch	Homo	D-Gl ucose	1,4	Storage	Plants	No Yes (α-1,)
	Homo-	D-Glucose	α-1,4	Energy-Storage		Yes, lots! (α-1,6)