CONCEPT: AFFINITY CHROMATOGRAPHY

• Affinity Chromatography: effectively purifies a protein ba	ased on its	(specific b	inding capabilitie	es).
$\hfill\Box$ Stationary phase material in the chromatograph	hy column is cov	alently linked to a	·	
● <u>Ligand</u> : a small substance that specifically to	to a biomolecule t	to form a complex	with it.	
$\hfill\Box$ Target protein binds to the ligand that's	to the stationa	ry phase &	in the colum	ın.
$\hfill\Box$ All other proteins do not bind the ligand & are $_$	out	t of the column wi	th the mobile pha	ise.
EXAMPLE: Affinity Chromatography.				
Affinity Column (Ligands) Stationary Phase Protein Mixture				Soluble Ligand

•Bound target protein can be later _____ from the column by adding a soluble ligand or salt to the mobile phase.

PRACTICE: In your own words, describe the principles involved in protein purification by affinity chromatography.

PRACTICE: The target protein to be purified is likely eluted from the affinity chromatography column by ________ Explain potential advantages & disadvantages of the elution strategies.

- a) Altering the pH of the mobile phase.
- b) Addition of a chaotropic agent such as urea.
- c) Addition of salt and/or free ligand.
- d) Raising the temperature in the column.

CONCEPT: AFFINITY CHROMATOGRAPHY

PRACTICE: A biochemist is attempting to separate a DNA-binding protein (protein X) from other proteins in solution (proteins A, B & C). Consider the chart & answer the questions below about what type of technique is best for separation.

	pl (Isoelectric Point)	Molar Mass	Binds to DNA?	
Protein A	7.4	82,000	Yes	
Protein B	3.8	21,500	Yes	
Protein C	7.9	23,000	No	
Protein X	7.8	22,000	Yes	

A)	What type of chromatography is best for separating protein X from protein A?
B)	What type of chromatography is best for separating protein X from protein B?
C)	What type of chromatography is best for separating protein X from protein C?