CONCEPT: LINEWEAVER BURK PLOT ### **Lineweaver-Burk Equation** - •Michaelis-Menten Equation can be inverted & rearranged to obtain the Lineweaver-_____ equation: $\left[\frac{1}{V_0} = \frac{K_m}{V_{max}} \left(\frac{1}{[S]}\right) + \frac{1}{V_{max}}\right]$ - ☐ The Lineweaver-Burk equation resembles the equation of a _____: y = mx + b. #### **Lineweaver-Burk Plot** - Values for V_{max} and K_m can be obtained from a *straight-line* on a ______ reciprocal plot or a ______-Burk plot. - \Box of V_0 (1/ V_0) and [S] (1/[S]) are plotted into a linear plot. - \Box _____ of the line is the ____ of K_m over V_{max} (K_m/V_{max}). # PRACTICE: A Lineweaver-Burk plot is used to: - a) Determine the equilibrium constant for an enzymatic reaction. - b) Illustrate the effect of temperature on an enzymatic reaction. - c) Extrapolate the reaction rate at any [E]. - d) Solve, graphically, for reaction rate at any [S]. # Y & X-Intercepts of a Lineweaver-Burk Plot - ●The most important data on a Lineweaver-Burk plot are the _____ of the line. - \Box Y-intercept = the _____ of V_{max} (1/ V_{max}) when x = 0. - \square X-intercept = the _____ reciprocal of $\mathbf{K}_{\mathbf{m}}$ (-1/ $\mathbf{K}_{\mathbf{m}}$) when y = 0. ## **CONCEPT:** LINEWEAVER BURK PLOT **PRACTICE:** To determine the V_{max} from a Lineweaver-Burk plot you would: - a) Multiply the reciprocal of the x-axis intercept by -1. - c) Take the reciprocal of the x-axis intercept. - b) Multiply the reciprocal of the y-axis intercept by -1. - d) Take the reciprocal of the y-axis intercept. **PRACTICE:** A Lineweaver-Burk plot generates a line with the following formula: y = 0.3x + 0.4. What is the K_m ? - a) 0.3 - b) 0.4 - c) 0.75 - d) 2.5 **PRACTICE:** Consider the equation for the line on the following Lineweaver-Burk plot: y = 6x + 3 - A) What is the K_m for the corresponding enzyme? - a) -2 mM - b) 18 mM - c) 2 mM - d) 9 mM - B) What is the V_{max} for the corresponding enzyme? - a) 0.333 mM/s - b) 9 mM/s - c) -6 mM/s - d) 18 mM/s **PRACTICE:** Consider the following enzyme-catalyzed reaction $A \rightarrow B$ and suppose the enzyme kinetic data for this reaction (shown in the chart below) is inverted and plotted onto a Lineweaver-Burk plot to obtain a straight line. A) What is the value of the y-intercept of the line? _____ | [A], μM | V ₀ , μmoles/min | |---------|-----------------------------| | 0.0875 | 0.18 | | 0.175 | 0.36 | | 0.875 | 1.7775 | | 1.75 | 3.6 | | 8.75 | 16.425 | | 17.5 | 29.25 | | 87.5 | 90 | | 175 | 119.25 | | 8750 | 177.75 | | 17500 | 180 | | 35000 | 180 | | B) What is the value of the x-intercept of the line? | | |--|--| | , – | |