CONCEPT: LINEWEAVER BURK PLOT

Lineweaver-Burk Equation

- •Michaelis-Menten Equation can be inverted & rearranged to obtain the Lineweaver-_____ equation: $\left[\frac{1}{V_0} = \frac{K_m}{V_{max}} \left(\frac{1}{[S]}\right) + \frac{1}{V_{max}}\right]$
 - ☐ The Lineweaver-Burk equation resembles the equation of a _____: y = mx + b.

Lineweaver-Burk Plot

- Values for V_{max} and K_m can be obtained from a *straight-line* on a ______ reciprocal plot or a ______-Burk plot.
 - \Box of V_0 (1/ V_0) and [S] (1/[S]) are plotted into a linear plot.
 - \Box _____ of the line is the ____ of K_m over V_{max} (K_m/V_{max}).

PRACTICE: A Lineweaver-Burk plot is used to:

- a) Determine the equilibrium constant for an enzymatic reaction.
- b) Illustrate the effect of temperature on an enzymatic reaction.
- c) Extrapolate the reaction rate at any [E].
- d) Solve, graphically, for reaction rate at any [S].

Y & X-Intercepts of a Lineweaver-Burk Plot

- ●The most important data on a Lineweaver-Burk plot are the _____ of the line.
 - \Box Y-intercept = the _____ of V_{max} (1/ V_{max}) when x = 0.
 - \square X-intercept = the _____ reciprocal of $\mathbf{K}_{\mathbf{m}}$ (-1/ $\mathbf{K}_{\mathbf{m}}$) when y = 0.

CONCEPT: LINEWEAVER BURK PLOT

PRACTICE: To determine the V_{max} from a Lineweaver-Burk plot you would:

- a) Multiply the reciprocal of the x-axis intercept by -1.
- c) Take the reciprocal of the x-axis intercept.
- b) Multiply the reciprocal of the y-axis intercept by -1.
- d) Take the reciprocal of the y-axis intercept.

PRACTICE: A Lineweaver-Burk plot generates a line with the following formula: y = 0.3x + 0.4. What is the K_m ?

- a) 0.3
- b) 0.4
- c) 0.75
- d) 2.5

PRACTICE: Consider the equation for the line on the following Lineweaver-Burk plot: y = 6x + 3

- A) What is the K_m for the corresponding enzyme?
- a) -2 mM
- b) 18 mM
- c) 2 mM
- d) 9 mM

- B) What is the V_{max} for the corresponding enzyme?
- a) 0.333 mM/s
- b) 9 mM/s
- c) -6 mM/s
- d) 18 mM/s

PRACTICE: Consider the following enzyme-catalyzed reaction $A \rightarrow B$ and suppose the enzyme kinetic data for this reaction (shown in the chart below) is inverted and plotted onto a Lineweaver-Burk plot to obtain a straight line.

A) What is the value of the y-intercept of the line? _____

[A], μM	V ₀ , μmoles/min
0.0875	0.18
0.175	0.36
0.875	1.7775
1.75	3.6
8.75	16.425
17.5	29.25
87.5	90
175	119.25
8750	177.75
17500	180
35000	180

B) What is the value of the x-intercept of the line?	
, –	